
DR3 – 1

4 The Interface Kit

Introduction . 9
Framework for the User Interface 9

Application Server Windows 10
BWindow Objects . 11
BView Objects . 11

Drawing Agent 11
Message Receiver. 12

The View Hierarchy . 13
Drawing and Event-Handling in the View Hierarchy 14
Overlapping Siblings 14

The Coordinate Space 14
Coordinate Systems. 15
Coordinate Geometry 16
Mapping Coordinates to Pixels 17
Screen Pixels . 17

Drawing . 18
View Coordinate Systems 18

Frame and Bounds Rectangles 19
Scrolling . 20

Clipping Region . 20
The View Color . 22
The Mechanics of Drawing 22

Graphics Environment 23
The Pen . 24
Colors . 24
Patterns . 25
Drawing Modes 27

Views and the Server 30
The Update Mechanism 31

Forcing an Update 32
Erasing the Clipping Region 32
Drawing during an Update 33
Drawing outside of an Update 33

2 – DR3

Picking Pixels to Stroke and Fill 34
Stroking Thin Lines. 34
Stroking Curved Lines 36
Filling and Stroking Rectangles 36
Filling and Stroking Polygons 38
Stroking Thick Lines 38

Handling Events . 40
Interface Events . 40
Hook Functions for Interface Events 42

Dispatching . 43
The Focus View. 44
Filtering Events 45

Message Protocols. 45
Key-Down Events 46
Key-Up Events 47
Mouse-Down Events 47
Mouse-Up Events. 48
Mouse-Moved Events. 48
Message-Dropped Events. 49
View-Moved Events 49
View-Resized Events 49
Value-Changed Events 50
Window-Activated Events 50
Quit-Requested Events 50
Window-Moved Events 51
Window-Resized Events 51
Screen-Changed Events. 51
Save-Requested Events 51
Panel-Closed Events 52
Pulse Events . 52

Keyboard Information. 53
Key Codes . 53
Kinds of Keys. 55
Modifier Keys. 57
Character Mapping 59
Key States. 61

Guide to the Classes . 63

BAlert . .65
Overview. 65
Constructor and Destructor 66
Member Functions . 67

DR3 – 3

BBitmap. .69
Overview. 69

Bitmap Data . 69
The Bounds Rectangle 70
The Color Space 70

Specifying the Image 71
Transparency . 72

Constructor and Destructor 72
Member Functions . 73

BBox. .77
Overview. 77
Constructor and Destructor 77
Member Functions . 78

BButton . .79
Overview. 79
Hook Functions . 80
Constructor. 80
Member Functions . 80

BCheckBox. .83
Overview. 83
Constructor. 83
Member Functions . 84

BControl .85
Overview. 85
Hook Functions . 85
Constructor and Destructor 86
Member Functions . 87

BListView .93
Overview. 93

Displaying the List . 93
Selecting and Invoking Items 93

Hook Functions . 94
Constructor and Destructor 95
Member Functions . 95

BMenu . 105
Overview. . 105

Menu Hierarchy . 105
Menu Items . 105

Hook Functions . 106
Constructor and Destructor 106
Member Functions . 108

4 – DR3

BMenuBar. . 117
Overview. . 117

The “Main” Menu Bar 117
A Kind of BMenu . 118

Constructor and Destructor 118
Member Functions . 119

BMenuItem . 121
Overview. . 121

Kinds of Items. . 121
Shortcuts and Triggers 121
Marked Items . 122
Disabled Items. . 122

Hook Functions . 123
Constructor and Destructor 123
Member Functions . 125

BPoint . 133
Overview. . 133
Data Members . 133
Constructor. . 134
Member Functions . 134
Operators. . 135

BPolygon . 139
Overview. . 139
Constructor and Destructor 139
Member Functions . 140
Operators. . 141

BPopUpMenu. . 143
Overview. . 143
Constructor and Destructor 144
Member Functions . 145

BRadioButton . 147
Overview. . 147
Constructor. . 147
Member Functions . 148

BRect . 151
Overview. . 151
Data Members . 152
Constructor. . 153
Member Functions . 153
Operators. . 158

DR3 – 5

BRegion. . 161
Overview. . 161
Constructor and Destructor 161
Member Functions . 162
Operators. . 164

BScrollBar. . 165
Overview. . 165

The Update Mechanism 165
Value and Range. . 166

Hook Functions . 167
Constructor and Destructor 167
Member Functions . 168

BScrollView . 171
Overview. . 171
Constructor and Destructor 171
Member Functions . 172

BSeparatorItem . 173
Overview. . 173
Constructor and Destructor 173
Member Functions . 174

BStringView. . 175
Overview. . 175
Constructor and Destructor 175
Member Functions . 176

BTextView. . 179
Overview. . 179

Resizing . 179
Shortcuts and Menu Items. 179

Hook Functions . 181
Constructor and Destructor 181
Member Functions . 182

BView . 197
Overview. . 197

Views and Windows . 197
Drag and Drop. . 198
Locking the Window 199
Derived Classes . 199

Hook Functions . 200
Constructor and Destructor 201
Member Functions . 204

6 – DR3

BWindow . 243
Overview. . 243

View Hierarchy . 244
Window Threads . 244
Quitting . 244

Hook Functions . 245
Constructor and Destructor 246
Member Functions . 248

Global Functions. . 271

Constants and Defined Types. 285
Constants. . 285
Defined Types . 294

DR3 – 7

8 – DR3

Interface Kit Inheritance Hierarchy

BObject
(Support Kit)

BWindowBLooper
(Application Kit)

BReceiver
(Application Kit)

BAlert

BView BTextView

BControl

BRadioButton

BScrollBar

BPoint

BScrollView

BButton

BCheckBox

BBox

BStringView

BListView

BMenu

BPopUpMenu

BMenuBar

BMenuItem BSeparatorItem

BRect

BPolygon

BRegion

BBitmap

Framework for the User Interface

DR3 The Interface Kit – 9

The Interface Kit

Most Be applications have an interactive and graphical user interface. When they start
up, they present themselves to the user on-screen in one or more windows. The
windows display areas where the user can do something—there may be menus to open,
buttons to click, text fields to type in, images to drag, and so on. Each user action on the
keyboard or mouse is an interface event that’s reported to the application and that the
application responds to. At least part of the response is always a change in what the
window displays—so that users can see the results of their work.

To run this kind of user interface, an application has to do three things. It must:

• Manage a set of windows,
• Draw within the windows, and
• Respond to messages that report interface events.

The application, in effect, carries on a conversation with the user. It draws to present
itself on-screen, the user does something with the keyboard or mouse, the event is
reported to the application in a message, and the application draws in response,
prompting more events and more messages.

The Interface Kit structures this interaction with the user. It defines a set of C++ classes
that give applications the ability to manage windows, draw in them, and efficiently
respond to the user’s instructions. Taken together, these classes define a framework for
interactive applications. By programming with the Kit, you’ll be able to construct an
application that effectively uses the capabilities of the Be machine.

This chapter first introduces the conceptual framework for the user interface, then
describes all the classes, functions, types, and constants the Kit defines. The reference
material that follows this introduction assumes the concepts and terminology presented
here.

Framework for the User Interface

A graphical user interface is organized around windows. Each window has a particular
role to play in an application and is more or less independent of other windows. While
working on the computer, users think in terms of windows—what’s in them and what
can be done with them—perhaps more than in terms of applications.

4

Framework for the User Interface

10 – The Interface Kit DR3

The design of the software mirrors the way the user interface works: it’s also organized
around windows. Within an application, each window runs in its own thread and is
represented by a separate BWindow object. The object is the application’s interface to
the window the system provides; the thread is where all the work that’s centered on the
window takes place.

Because every window has its own thread, the user can, for example, scroll the contents
of one window while watching an animation in another, or start a time-consuming
computation in an application and still be able to use the application’s other windows. A
window won’t stop working when the user turns to another window.

Events that the user directs at a particular window initiate activity within that window’s
thread. When the user clicks a button within a window, for example, everything that
happens in response to the click happens in the window thread (unless the application
arranges for other threads to be involved). In its interaction with the user, each window
acts on its own, independently of other windows.

Application Server Windows

In a multitasking environment, any number of applications might be running at the same
time, each with its own set of windows on-screen. The windows of all running
applications must cooperate in a common interface. For example, there can be only one
active window at a time—not one per application, but one per machine. A window that
comes to the front must jump over every other window, not just those belonging to the
same application. When the active window is closed, the window behind it must
become active, even if it belongs to a different application.

Because it would be difficult for each application to manage the interaction of its
windows with every other application, windows are assigned, at the lowest level, to a
separate entity, the Application Server. The Server’s principal role in the user interface
is to provide applications with the windows they require.

Everything a program or a user does is centered on the windows the Application Server
provides. Users type into windows, click buttons in windows, drag images to windows,
and so on; applications draw in windows to display the text users type, the buttons they
can click, and the images they can drag.

The Application Server, therefore, is the conduit for an application’s event input and
drawing output:

• It monitors the user’s actions on the keyboard and mouse and sends messages
reporting interface events to the application.

• It receives drawing instructions from the application and interprets them to render
images within windows.

The Server relieves applications of much of the burden of basic user-interface work.
The Interface Kit organizes and further simplifies an application’s interaction with the
Server.

Framework for the User Interface

DR3 The Interface Kit – 11

BWindow Objects

Every window in an application is represented by a separate BWindow object.
Constructing the BWindow establishes a connection to the Application Server—one
separate from, but initially dependent on, the connection previously established by the
BApplication object. The Server creates a window for the new object and dedicates a
separate thread to it.

The BWindow object is a kind of BLooper, so it spawns a thread for the window in the
application’s address space and begins running a message loop where it receives
messages from the Server reporting interface events. The window thread in the
application is directly connected to the dedicated thread in the Server.

The BWindow object, therefore, is in position to serve three crucial roles:

• It can act as the application’s interface to a Server window. It has functions that
the application can call to manipulate the window programmatically—move it,
resize it, close it, and so on. It also declares the functions that the system calls to
notify the application that the user manipulated the window.

• It can organize message-handling within the window thread. Since it runs the
window’s message loop, it gets to decide how each message should be handled.
It’s the focus and central distribution point for all messages that initiate activity in
the thread.

• As the entity that holds rendered images, it can manage the objects that produce
those images. (This is discussed under “BView Objects” below.)

All other Interface Kit objects play roles that depend on a BWindow. They draw in a
window, respond to event messages received by a window, or act in support of other
objects that draw and handle events.

BView Objects

For purposes of drawing and event-handling, a window can be divided up into smaller
rectangular areas called views. Each view corresponds to one part of what the window
displays—a scroll bar, a document, a list, a button, or some other more or less self-
contained portion of the window’s contents.

An application sets up a view by constructing a BView object and associating it with a
particular BWindow. The BView object is responsible for drawing within the view
rectangle, and for handling interface events directed at that area.

Drawing Agent

A window is a tablet that can retain and display rendered images, but it can’t draw them;
for that it needs a set of BViews. A BView is an agent for drawing, but it can’t render

Framework for the User Interface

12 – The Interface Kit DR3

the images it creates; for that it needs a BWindow. The two kinds of objects work hand
in hand.

Each BView object is an autonomous graphics environment for drawing. Some aspects
of the environment, such as the list of possible colors, are shared by all BViews and all
applications. But within those broad limits, every BView maintains an independent
graphics state. It has its own coordinate system, current colors, drawing mode, clipping
region, pen position, and so on.

The BView class defines the functions that applications call to carry out elemental
drawing tasks—such as stroking lines, filling shapes, drawing characters, and imaging
bitmaps. These functions are typically used to implement another function—called
Draw()—in a class derived from BView. This view-specific function draws the contents
of the view rectangle.

The BWindow will call the BView’s Draw() function whenever the window’s contents
(or at least the part that the BView has control over) need to be updated. A BWindow
first asks its BViews to draw when the window is initially placed on-screen. Thereafter,
they might be asked to refresh the contents of the window whenever the contents change
or when they’re revealed after being hidden or obscured. A BView might be called upon
to draw at any time.

Because Draw() is called on the command of others, not the BView, it can be considered
to draw passively. It presents the view as it currently appears. For example, the Draw()
function of a BView that displays editable text would draw the characters that the user
had inserted up to that point.

BViews also draw actively in response to messages reporting interface events. For
example, text is highlighted as the user drags over it and is then replaced as the user
types. Each change is the result of an event reported to the BView. For passive drawing,
the BView implements a function (Draw()) that others may call. For active drawing, it
calls the drawing functions itself (it may even call Draw()).

Message Receiver

The drawing that a BView does is often designed to prompt a user response of some
kind—an empty text field with a blinking caret invites typed input, a menu item or a
button invites a click, an icon looks like it can be dragged, and so on.

When the user acts, system messages that report the resulting events are sent to the
BWindow object, which determines which BView elicited the events and should
respond to them. For example, a BView that draws typed text can expect to respond to
messages reporting the user’s keystrokes. A BView that draws a button gets to handle
the events that are generated when the button is clicked. The BView class derives from
BReceiver, so BView objects are eligible to receive messages dispatched by the
BWindow.

Framework for the User Interface

DR3 The Interface Kit – 13

Just as classes derived from BView implement Draw() functions to draw within the view
rectangle, they also implement the hook functions that respond to events. These
functions are discussed later, under “Hook Functions for Interface Events” on page 42.

Largely because of its graphics role and its central role in handling events, BView is the
biggest and most diverse class in the Interface Kit. Most other Interface Kit classes are
derived from it.

The View Hierarchy

A window typically contains a number of different views—all arranged in a hierarchy
beneath the top view, a view that’s exactly the same size as the content area of the
window. The top view is a companion of the window; it’s created by the BWindow
object when the BWindow is constructed. When the window is resized, the top view is
resized to match. Unlike other views, the top view doesn’t draw or handle events; it
serves merely to connect the window to the views that the application creates and places
in the hierarchy.

As illustrated in the diagram below, the view hierarchy can be represented as a
branching tree structure with the top view at its root. All views in the hierarchy (except
the top view) have one, and only one, parent view. Each view (including the top view)
can have any number of child views.

In this diagram, the top view has four children, the container view has three, and the
border view one. Child views are located within their parents, so the hierarchy is one of
overlapping rectangles. The container view, for example, takes up some of the top
view’s area and divides its own area into a document view and two scroll bars.

When a new BView object is created, it isn’t attached to a window and it has no parent.
It’s added to a window by making it a child of a view already in the view hierarchy. This
is done with the AddChild() function. A view can be made a child of the window’s top
view by calling BWindow’s version of AddChild().

text field

buttonbordergraph

top view

view

vertical horizontal

container

scroll barscroll bar

view view

document
view

Framework for the User Interface

14 – The Interface Kit DR3

Until it’s assigned to a window, a BView can’t draw and won’t receive reports of events.
BViews know how to produce images, but it takes a window to display and retain the
images they create.

Drawing and Event-Handling in the View Hierarchy

The view hierarchy determines what’s displayed where on-screen, and also how user
actions are associated with the responsible BView object:

• When the views in a window are called upon to draw, parents draw before their
children; children draw in front of their ancestors.

• Mouse events (like the mouse-down and mouse-up events that result from a click)
are associated with the view where the cursor is located. Since the cursor points
to the frontmost view at any given location, it’s likely to be pointing at a view
close to the bottom of the hierarchy. It’s those views—the ones that have no
children—that are responsible for most of the drawing and event-handling for the
window. Views farther up the hierarchy tend to contain and organize those at the
bottom.

Overlapping Siblings

Although children wait for their parents when it comes time to draw and parents defer to
their offspring when it comes to time to handle events, sibling views are not so well-
behaved. Siblings don’t draw in any predefined order. This doesn’t matter, as long as
the view rectangles of the siblings don’t overlap. If they do overlap, it’s indeterminate
which view will draw last—that is, which one will draw on top of the other.

Similarly, it’s indeterminate which view will be associated with mouse events in the area
the siblings share. It may be one view or it may be the other, and it won’t necessarily be
the one that drew the image the user sees.

Therefore, it’s strongly recommended that sibling views should be arranged so that they
don’t overlap.

The Coordinate Space

To locate windows and views, draw in them, and report where the cursor is positioned
over them, it’s necessary to have some conventional way of talking about the display
surface. The same conventions are used whether the display device is a monitor that
shows images on a screen or a printer that puts them on a page.

Framework for the User Interface

DR3 The Interface Kit – 15

In Be software, the display surface is described by a standard two-dimensional
coordinate system where the y-axis extends downward and the x-axis extends to the
right, as illustrated below:

y coordinate values are greater towards the bottom of the display and smaller towards
the top, x coordinate values are greater to the right and smaller to the left.

The axes define a continuous coordinate space where distances are measured by
floating-point values (floats). All quantities in this space—including widths and
heights, x and y coordinates, font sizes, angles, and the size of the pen—are floating
point numbers.

Floating-point coordinates permit precisely stated measurements that can take
advantage of display devices with higher resolutions than the screen. For example, a
vertical line 0.4 units wide would be displayed using a single column of pixels on-
screen, the same as a line 1.4 units wide. However, a 300 dpi printer would use two
pixel columns to print the 0.4-unit line and six to print the 1.4-unit line.

A coordinate unit is 1/72 of an inch, roughly equal to a typographical point. However,
all screens are considered to have a resolution of 72 pixels per inch (regardless of the
actual dimension), so coordinate units count screen pixels. One unit is the distance
between the centers of adjacent pixels on-screen.

Coordinate Systems

Specific coordinate systems are associated with the screen, with windows, and with the
views inside windows. They differ only in where the two axes are located:

• The global or screen coordinate system has its origin, (0.0, 0.0), at the left top
corner of the screen. It’s used for positioning windows on-screen, < for arranging
multiple screens connected to the same machine, > and for comparing coordinate
values that weren’t originally stated in a common coordinate system.

• A window coordinate system has its origin at the left top corner of the content area
of a window. It’s used principally for positioning views within the window. Each
window has its own coordinate system so that locations within the window can be
specified without regard to where the window happens to be on-screen.

x-axis

y-axis (50.0, 22.5)

(25.0, 15.0)

(20.0, –5.0)

(0.0, 0.0)

(–10.0, 10.0)

(37.5, 5.0)

Framework for the User Interface

16 – The Interface Kit DR3

• A view coordinate system has its default origin at the left top corner of the view
rectangle. However, scrolling can shift view coordinates and move the origin.
View-specific coordinates are used for all drawing operations and to report most
events.

Coordinate Geometry

The Interface Kit defines a handful of basic classes for locating points and areas within a
coordinate system:

• A BPoint object is the simplest way to specify a coordinate location. Each object
stores two values—an x coordinate and a y coordinate—that together locate a
specific point, (x, y), within a given coordinate system.

• A BRect object represents a rectangle; it’s the simplest way to designate an area
within a coordinate system. The BRect class defines a rectangle as a set of four
coordinate values—corresponding to the rectangle’s left, top, right, and bottom
edges, as illustrated below:

The sides of the rectangle are therefore parallel to the coordinate axes. The left
and right sides delimit the range of x coordinate values within the rectangle, and
the top and bottom sides delimit the range of y coordinate values. For example, if
a rectangle’s left top corner is at (0.8, 2.7) and its right bottom corner is at
(11.3, 49.5), all points having x coordinates ranging from 0.8 through 11.3 and
y coordinates from 2.7 through 49.5 lie inside the rectangle.

If the top of a rectangle is the same as its bottom, or its left the same as its right,
the rectangle defines a straight line. If the top and bottom are the same and also
the left and right, it collapses to a single point. Such rectangles are still valid—
they specify real locations within a coordinate system. However, if the top is
greater than the bottom or the left greater than the right, the rectangle is invalid; it
has no meaning.

bottom

top

left

right

(0.0, 0.0)

y-axis

x-axis

Framework for the User Interface

DR3 The Interface Kit – 17

• A BPolygon object represents a polygon, a closed figure with an arbitrary number
of sides. The polygon is defined as an ordered set of points. It encloses the area
that would be outlined by connecting the points in order, then connecting the first
and last points to close the figure. Each point is therefore a potential vertex of the
polygon.

• A BRegion object defines a set of points. A region can be any shape and even
include discontinuous areas.

Mapping Coordinates to Pixels

The device-independent coordinate space described above must be mapped to the pixel
grid of a particular display device—the screen, a printer, or some other piece of
hardware that’s capable of rendering an image. For example, to display a rectangle, it’s
necessary to find the pixel columns that correspond to its right and left sides and the
pixel rows that correspond to its top and bottom.

This depends entirely on the resolution of the device. In essence, each device-
independent coordinate value must be translated internally to a device-dependent
value—an integer index to a particular column or row of pixels. In the coordinate space
of the device, one unit equals one pixel.

This translation is easy for the screen, since, as mentioned above, there’s a one-to-one
correspondence between coordinate units and pixels. It reduces to rounding floating-
point coordinates to integers. For other devices, however, the translation means first
scaling the coordinate value to a device-specific value, then rounding. For example, the
point (12.3, 40.8) would translate to (12, 41) on the screen, but to (51, 170) on a 300 dpi
printer.

Screen Pixels

To map coordinate locations to device-specific pixels, you need to know only two
things:

• The resolution of the device, and
• The location of the coordinate axes relative to pixel boundaries.

The axes are located in the same place for all devices: The x-axis runs left to right along
the middle of a row of pixels and the y-axis runs down the middle of a pixel column.
They meet at the very center of a pixel.

Because coordinate units match pixels on the screen, this means that all integral
coordinate values (those without a fractional part) fall midway across a screen pixel.

Drawing

18 – The Interface Kit DR3

The following illustration shows where various x coordinate values fall on the x-axis.
The broken lines represent the division of the screen into a pixel grid:

As this illustration shows, it’s possible to have coordinate values that lie on the
boundary between two pixels. A later section, “Picking Pixels to Stroke and Fill”
section on page 34, describes how these values are mapped to one pixel or the other.

Drawing

Drawing is done by BView objects. As discussed above, the views within a window are
organized into a hierarchy—there can be views within views—but each view is an
independent drawing agent and maintains a separate graphics environment. This section
discusses the framework in which BViews draw, beginning with view coordinate
systems. Detailed descriptions of the functions mentioned here can be found in the
BView and BWindow class descriptions.

View Coordinate Systems

As a convenience, each view is assigned a coordinate system of its own. By default, the
coordinate origin—(0.0, 0.0)—is located at the left top corner of the view rectangle.
(For an overview of the coordinate systems assumed by the Interface Kit, see “The
Coordinate Space” section on page 14 above.)

When a view is added as a child of another view, it’s located within the coordinate
system of its parent. A child is considered part of the contents of the parent view. If the
parent moves, the child moves with it; if the parent view scrolls its contents, the child
view is shifted along with everything else in the view.

Since each view retains its own internal coordinate system no matter who its parent is,
where it’s located within the parent, or where the parent is located, a BView’s drawing
and event-handling code doesn’t need to be concerned about anything exterior to itself.

x-axis

y-axis

0.0 2.51.0 3.753.25–1.0 4.54.0

Drawing

DR3 The Interface Kit – 19

To do its work, a BView need look no farther than the boundaries of its own view
rectangle.

Frame and Bounds Rectangles

Although a BView doesn’t have to look outside its own boundaries, it does have to know
where those boundaries are. It can get this information in two forms:

• Since a view is located within the coordinate system of its parent, the view
rectangle is initially defined in terms of the parent’s coordinates. This defining
rectangle for a view is known as its frame rectangle. (See the BView constructor
and the Frame() function.)

• When translated from the parent’s coordinates to the internal coordinates of the
view itself, the same rectangle is known as the bounds rectangle. (See the
Bounds() function.)

The illustration below shows a child view 181.0 units wide and 136.0 units high. When
viewed from the outside, from the perspective of its parent’s coordinate system, it has a
frame rectangle with left, top, right, and bottom coordinates at 90.0, 60.0, 270.0, and
195.0, respectively. But when viewed from the inside, in the view’s own coordinate
system, it has a bounds rectangle with coordinates at 0.0, 0.0, 180.0, and 135.0:

When a view moves to a new location in its parent, its frame rectangle changes but not
its bounds rectangle. When a view scrolls its contents, its bounds rectangle changes, but
not its frame. The frame rectangle positions the view in the world outside; the bounds
rectangle positions the contents inside the view.

Since a BView does its work in its own coordinate system, it refers to the bounds
rectangle more often than to the frame rectangle.

parent view
60.0
0.0

135.0
195.0

90.0 0.0 180.0 270.0

child view

Drawing

20 – The Interface Kit DR3

Scrolling

A BView scrolls its contents by shifting coordinate values within the view rectangle—
that is, by altering the bounds rectangle. If, for example, the top of a view’s bounds
rectangle is at 100.0 and its bottom is at 200.0, scrolling downward 50.0 units would put
the top at 150.0 and the bottom at 250.0. Contents of the view with y coordinate values
of 150.0 to 200.0, originally displayed in the bottom half of the view, would be shifted
to the top half. Contents with y coordinate values from 200.0 to 250.0, previously
unseen, would become visible at the bottom of the view. This is illustrated below:

Scrolling doesn’t move the view—it doesn’t alter the frame rectangle—it moves only
what’s displayed inside the view. In the illustration above, a “data rectangle” encloses
everything the BView is capable of drawing. For example, if the view is able to display
an entire book, the data rectangle would be large enough to enclose all the lines and
pages of the book laid end to end. However, since a BView can draw only within its
bounds rectangle, everything in the data rectangle with coordinates that fall outside the
bounds rectangle would be invisible. To make unseen data visible, the bounds rectangle
must change the coordinates that it encompasses. Scrolling can be thought of as sliding
the view’s bounds rectangle to a new position on its data rectangle, as is shown in the
illustration above. However, as it appears to the user, it’s moving the data rectangle
under the bounds rectangle. The view doesn’t move; the data does.

Clipping Region

The Application Server clips the images that a BView produces to the region where it’s
permitted to draw.

This region is never any larger than the view’s bounds rectangle; a view cannot draw
outside its bounds. Furthermore, since a child is considered part of its parent, a view
can’t draw outside the bounds rectangle of its parent either—or, for that matter, outside
the bounds rectangle of any ancestor view. In addition, since child views draw after, and
therefore logically in front of, their parents, a view concedes some of its territory to its
children.

bounds
rectangle

data
rectangle

100.0

250.0

150.0

200.0

300.0

100.0

250.0

150.0

200.0

300.0

Drawing

DR3 The Interface Kit – 21

Thus, the visible region of a view is the part of its bounds rectangle that’s inside the
bounds rectangles of all its ancestors, minus the frame rectangles of its children. This is
illustrated in the figure below. It shows a hierarchy of three views. The area filled with
a crosshatch pattern is the visible region of view A; it omits the area occupied by its
child, view B. The visible region of view B is colored dark gray; it omits the part of the
view that lies outside its parent. View C has no visible region, for it lies outside the
bounds rectangle of its ancestor, view A:

The visible region of a view might be further restricted if its window is obscured by
another window or if the window it’s in lies partially off-screen. The visible region
includes only those areas that are actually visible to the user. For example, if the three
views in the illustration above were in a window that was partially blocked by another
window, their visible regions might be considerably smaller. This is illustrated below:

Note that in this case, view A has a discontinuous visible region.

view A

view B

view C

view A

view B

view C

another
window

Drawing

22 – The Interface Kit DR3

The Application Server clips the drawing that a view does to a region that’s never any
larger than the visible region. On occasion, it may be smaller. For the sake of
efficiency, while a view is being automatically updated, the clipping region excludes
portions of the visible region that don’t need to be redrawn:

• When a view is scrolled, the Application Server may be able to shift some of its
contents from one portion of the visible region to another. The clipping region
excludes any part of the visible region that the Server was able to update on its
own; it includes only the part where the BView must produce images that were
not previously visible.

• If a view is resized larger, the clipping region may include only the new areas that
were added to the visible region. (But see the flags argument for the BView
constructor.)

• If only part of a view is invalidated (by the Invalidate() function), the clipping
region is the intersection of the visible region and the invalid rectangle.

An application can also limit the clipping region for a view by passing a BRegion object
to SetClippingRegion(). The clipping region won’t include any areas that aren’t in the
region passed. The Application Server calculates the clipping region as it normally
would, but intersects it with the specified region.

You can obtain the current clipping region for a view by calling GetClippingRegion().
(See also the BRegion class description.)

The View Color

Every view has a basic, underlying color. It’s the color that fills the view rectangle
before the BView does any drawing. The user may catch a glimpse of this color when
the view is first shown on-screen, when it’s resized larger, and when it’s erased in
preparation for an update. It will also be seen wherever the BView fails to draw in the
visible region.

In a sense, the view color is the canvas on which the BView draws. It doesn’t enter into
any of the object’s drawing operations except to provide a background; it’s not one of
the BView’s graphics parameters.

By default, the view color is white. You can assign a different color to a view by calling
BView’s SetViewColor() function. Every view can have its own color.

The Mechanics of Drawing

Views draw through a set of primitive functions such as:

• DrawString(), which draws a string of characters,

• DrawBitmap(), which produces an image from a bitmap,

Drawing

DR3 The Interface Kit – 23

• StrokeLine(), StrokeArc(), and other Stroke...() functions, which stroke lines along
defined paths, and

• FillEllipse(), FillRect(), and other Fill...() functions, which fill closed shapes.

The way these functions work depends not only on the values that they’re passed—the
particular string, bitmap, arc, or ellipse that’s to be drawn—but on previously set values
in the BView’s graphics environment.

Graphics Environment

Each BView object maintains its own graphics environment for drawing. The
coordinate system and the clipping region are two fundamental parts of that
environment, but not the only parts. It also includes a number of parameters that can be
set and reset at will to affect the next image drawn. These parameters are:

• Font attributes that determine the appearance of text the BView draws. (See
SetFontName() and its companion functions.)

• Two pen parameters—a location and a size. The pen location determines where
the next drawing will occur and the pen size determines the thickness of stroked
lines. (See MovePenBy() and SetPenSize().)

• Two current colors—a front color and a background color—that can be used
either alone or in combination to form a pattern or halftone. The front color is
used for most drawing. The background color is sometimes set to the underlying
view color so that it can be used to erase other drawing or, because it matches the
view background, make it appear that drawing has not touched certain pixels.
(See the SetFrontColor() and SetBackColor() functions and the “Patterns” section
below.)

• A drawing mode that determines how the next image is to be rendered. (See the
“Drawing Modes” section below and the SetDrawingMode() function.)

By default, a BView’s graphics parameters are set to the following values:

Font “monaco” (9-point bitmap font, no rotation, 90° shear)
Pen position (0.0, 0.0)
Pen size 1.0 coordinate units
Front color Black (red, green, and blue components all equal to 0)
Background color White (red, green, and blue components all equal to 255)
Drawing mode Copy mode (OP_COPY)
Clipping region The visible region of the view
Coordinate system Origin at the left top corner of the bounds rectangle

However, as the next section, “Views and the Server” on page 30, explains, these values
take effect only when the BView is assigned to a window.

Drawing

24 – The Interface Kit DR3

The Pen

The pen is a fiction that encompasses two properties of a view’s graphics environment:
the current drawing location and the thickness of stroked lines.

The pen location determines where the next image will be drawn—but only for the few
functions that don’t fully specify the drawing coordinates. Some drawing functions
alter the pen location—as if the pen actually moves as it does the drawing—but usually
it’s set by calling MovePenBy() or MovePenTo().

The pen that draws lines (through the various Stroke...() functions) has a square tip. The
larger the square, the thicker the line that it draws. The size of the tip—the length of one
side of the square—is fixed by SetPenSize().

The pen size is expressed in coordinate units, which must be translated to a particular
number of pixels for the display device. This is done by scaling the pen size to a device-
specific value and rounding to the closest integer. For example, pen sizes of 2.6 and 3.3
would both translate to 3 pixels on-screen, but to 7 and 10 pixels respectively on a 300
dpi printer.

The size is never rounded to 0; no matter how small the pen may be, the line never
disappears. If the pen size is set to 0.0, the line will be as thin as possible—it will be
drawn using the fewest possible pixels on the display device. (In other words, it will be
rounded to 1 for all devices.)

If the size translates to a square with more than one pixel on a side, the pixel in the left
top corner follows the path of the line. The pen extends to the right and below the path
that it strokes.

A later section, “Picking Pixels to Stroke and Fill” on page 34, illustrates how pens of
different sizes choose the pixels to be colored.

Colors

The front and background colors are specified as rgb_color values—full 24-bit values
with separate red, green, and blue components. Although there may be limitations on
the colors that can be rendered on-screen, there are none on the colors that can be
specified.

The way colors are specified for a bitmap depends on the color space in which they’re
interpreted. The color space determines the depth of the bitmap data (how many bits of
information are stored for each pixel) and its interpretation (whether the data represents
shades of gray or true colors, whether it’s segmented into color components, what the
components are, and so on). Four possible color spaces are recognized:

MONOCHROME_1_BIT One bit of data per pixel, where 1 is black and 0 is
white.

Drawing

DR3 The Interface Kit – 25

GRAYSCALE_8_BIT Eight bits of data per pixel, where a value of 255 is
black and 0 is white. <This color space is currently
not implemented. >

COLOR_8_BIT Eight bits of data per pixel, interpreted as an index into
a list of 256 colors. The list is part of the system color
map, and is the same for all applications.

RGB_24_BIT Four components of data per pixel—red, green, blue,
and alpha, arranged in that order—with eight bits per
component. A component value of 255 yields the
maximum amount of red, green, or blue, and a value
of 0 indicates the absence of that color. < The alpha
component is currently ignored. It will specify the
coverage of the color—how transparent or opaque it
is. >

The components of an RGB_24_BIT color are meshed rather than separated into distinct
planes; all four components are specified for the first pixel before the four components
for the second pixel, and so on.

The format of a rgb_color value exactly matches that of the RGB_24_BIT color space—in
other words, the front and background colors are specified as RGB_24_BIT colors.
However, on-screen, all colors are rendered in the COLOR_8_BIT color space. Specified
24-bit colors are converted to the closest 8-bit color in the color list. (See the BBitmap
class and the system_colors() global function.)

Patterns

Functions that stroke a line or fill a closed shape don’t draw directly in either the front or
the background color. Rather they take a pattern, an arrangement of one or both colors
that’s repeated over the entire surface being drawn.

By combining the background color with the front color, patterns can produce dithered
colors that lie somewhere between two hues in the COLOR_8_BIT color space. Patterns
also permit drawing with less than the solid front color (for intermittent or broken lines,
for example) and can take advantage of drawing modes that treat the background color
as if it were transparent, as discussed below.

A pattern is defined as an 8-pixel by 8-pixel square. The pattern type is 8 bytes long,
with one byte per row and one bit per pixel. Rows are specified from top to bottom and
pixels from left to right. Bits marked 1 designate the front color; those marked 0
designate the background color. For example, a pattern of wide diagonal stripes could
be defined as follows:

pattern stripes = { 0xc7, 0x8f, 0x1f, 0x3e,
 0x7c, 0xf8, 0xf1, 0xe3 };

Drawing

26 – The Interface Kit DR3

Patterns repeat themselves across the screen, like tiles that are laid side by side. The
pattern defined above looks like this:

The dotted lines in this illustration show the separation of the screen into pixels. The
thicker black line outlines one 8-by-8 square that the pattern defines.

The outline of the shape being filled or the width of the line being stroked determines
where the pattern is revealed. It’s as if the screen was covered with the pattern just
below the surface, and stroking or filling allowed some of it to show through. For
example, stroking a one-pixel wide horizontal path in the pattern illustrated above
would result in a dotted line, with the dashes (in the front color) slightly longer than the
spaces between (in the background color):

When stroking a line or filling a shape, the pattern serves as the source image for the
current drawing mode, as explained under “Drawing Modes” below. The nature of the
mode determines how the pattern interacts with the destination image, the image already
in place.

The Interface Kit defines three patterns:

• solid_front consists only of the front color,
• solid_back has only the background color, and
• mixed_colors mixes the two colors evenly, like the pattern on a checkerboard.

solid_front is the default pattern for all drawing functions. Applications can define as
many other patterns as they need.

Drawing Modes

When a BView draws, it in effect transfers an image to a target location somewhere in
the view rectangle. The drawing mode determines how the image being transferred

Drawing

DR3 The Interface Kit – 27

interacts with the image already in place at that location. The image being transferred is
known as the source image; it might be a bitmap or a pattern of some kind. The image
already in place is known as the destination image.

In the simplest and most straightforward kind of drawing, the source image is simply
painted on top of the destination; the source replaces the destination. However, there are
other possibilities. There are nine different drawing modes, nine distinct ways of
combining the source and destination images. The modes are designated by
drawing_mode constants that can be passed to SetDrawingMode():

OP_COPY OP_MIN OP_ADD
OP_OVER OP_MAX OP_SUBTRACT
OP_ERASE OP_INVERT OP_BLEND

OP_COPY is the default mode and the simplest. It transfers the source image to the
destination, replacing whatever was there before. The destination is ignored.

In the other modes, however, some of the destination might be preserved, or the source
and destination might be combined to form a result that’s different from either of them.
For these modes, it’s convenient to think of the source image as an image that exists
somewhere independent of the destination location, even though it’s not actually visible.
It’s the image that would be rendered at the destination in OP_COPY mode.

The modes work for all BView drawing functions—including those that stroke lines and
fill shapes, those that draw characters, and those that image bitmaps. The way they
work depends foremost on the nature of the source image—whether it’s a pattern or a
bitmap. For the Fill... and Stroke... functions, the source image is a pattern that has the
same shape as the area being filled or the area the pen touches as it strokes a line. For
DrawBitmap(), the source image is a rectangular bitmap.

• Only a source pattern has designated “front” and “background” colors. Even if a
source bitmap has colors that match the current front and background, they’re not
handled like the colors in a pattern; they’re treated just like any other color in the
bitmap.

• On the other hand, only a source bitmap can have transparent pixels. In the
COLOR_8_BIT color space, a pixel is made transparent by assigning it the
TRANSPARENT_8_BIT value. In the RGB_24_BIT color space, a pixel assigned the
TRANSPARENT_24_BIT value is considered transparent. These values have meaning
only for source bitmaps, not for source patterns. If the current front or
background color in a pattern happens to have a transparent value, it’s still treated
as the front or background color, not like transparency in a bitmap.

The way the drawing modes work also depends on the color space of the source image
and the color space of the destination. The following discussion concentrates on
drawing where the source and destination both contain colors. This is the most common
case, and also the one that’s most general.

When applied to colors, the nine drawing modes fall naturally into four groups:

Drawing

28 – The Interface Kit DR3

• The OP_COPY mode, which copies the source image to the destination.

• The OP_OVER, OP_ERASE, and OP_INVERT modes, which—despite their
differences—all treat the background color in a pattern as if it were transparent.

• The OP_ADD, OP_SUBTRACT, and OP_BLEND modes, which combine colors in the
source and destination images.

• The OP_MIN and OP_MAX modes, which choose between the source and
destination colors.

The following paragraphs describe each of these groups in turn.

OP_COPY. In OP_COPY mode, the source image replaces the destination. This is the
default drawing mode and the one most commonly used. Because this mode doesn’t
have to test for particular color values in the source image, look at the colors in the
destination, or compute colors in the result, it’s also the fastest of the modes.

If the source image contains transparent pixels, their transparency will be retained in the
result; the transparent value is copied just like any other color. However, the appearance
of a transparent pixel when shown on-screen is indeterminate. If a source image has
transparent portions, it’s best to transfer it to the screen in OP_OVER or another mode. In
all modes other than OP_COPY, a transparent pixel in a source bitmap preserves the
color of the corresponding destination pixel.

OP_OVER, OP_ERASE, and OP_INVERT. These three drawing modes are designed
specifically to make use of transparency in the source image; they’re able to preserve
some of the destination image. In these modes (and only these modes) the background
color in a source pattern acts just like transparency in a source bitmap.

• The OP_OVER mode places the source image “over” the destination; the source
provides the foreground and the destination the background. In this mode, the
source image replaces the destination image (just as in the OP_COPY mode)—
except where a source bitmap has transparent pixels and a source pattern has the
background color. Transparency in a bitmap and the background color in a
pattern retain the destination image in the result.

By masking out the unwanted parts of a rectangular bitmap with transparent
pixels, this mode can place an irregularly shaped source image on top of a
background image. Transparency in the source foreground lets the destination
background show through. The versatility of OP_OVER makes it the second most
commonly used mode, after OP_COPY.

• The OP_ERASE mode doesn’t draw the source image at all. Instead, it erases the
destination image. Like OP_OVER, it preserves the destination image wherever a
source bitmap is transparent or a source pattern has the background color. But
everywhere else—where the source bitmap isn’t transparent and the source

Drawing

DR3 The Interface Kit – 29

pattern has the front color—it removes the destination image, replacing it with the
background color.

Although this mode can be used for selective erasing, it’s simpler to erase by
filling an area with the solid_back pattern in OP_COPY mode.

• The OP_INVERT mode, like OP_ERASE, doesn’t draw the source image. Instead, it
inverts the colors in the destination image. As in the case of the OP_OVER and
OP_ERASE modes, where a source bitmap is transparent or a source pattern has the
background color, the destination image remains unchanged in the result.
Everywhere else, the color of the destination image is inverted.

These three modes also work for monochrome images. If the source image is
monochrome, the distinction between source bitmaps and source patterns breaks down.
Two rules apply:

• If the source image is a monochrome bitmap, it acts just like a pattern. A value of
1 in the bitmap designates the current front color and a value of 0 designates the
current background color. Thus, 0, rather than TRANSPARENT_24_BIT or
TRANSPARENT_8_BIT, becomes the transparent value.

• If the source and destination are both monochrome, the front color is necessarily
black (1) and the background color is necessarily white (0)—but otherwise the
drawing modes work as described. With the possible colors this severely
restricted, the three modes are reduced to boolean operations: OP_OVER is the
same as a logical ‘OR’, OP_INVERT the same as logical ‘exclusive OR’, and
OP_ERASE the same as an inversion of logical ‘AND’.

OP_ADD, OP_SUBTRACT, and OP_BLEND. These three drawing modes combine the
source and destination images, pixel by pixel, and color component by color component.
As in most of the other modes, transparency in a source bitmap preserves the destination
image in the result. Elsewhere, the result is a combination of the source and destination.
The front and background colors of a source pattern aren’t treated in any special way;
they’re handled just like other colors.

• OP_ADD adds each component of the source color to the corresponding
component of the destination color, with a component value of 255 as the limit.
Colors become brighter, closer to white.

By adding a uniform gray to each pixel in the destination, for example, the whole
destination image can be brightened by a constant amount.

• OP_SUBTRACT subtracts each component of the source color from the
corresponding component of the destination color, with a component value of 0 as
the limit. Colors become darker, closer to black.

For example, by subtracting a uniform amount from the red component of each
pixel in the destination, the whole image can be made less red.

Drawing

30 – The Interface Kit DR3

• OP_BLEND averages each component of the source and destination colors (adds
the source and destination components and divides by 2). The two images are
merged into one.

These modes work only for color images, not for monochrome ones. If the source or
destination is specified in the COLOR_8_BIT color space, the color will be expanded to a
full COLOR_24_BIT value to compute the result; the result is then contracted to the
closest color in the COLOR_8_BIT color space.

OP_MIN and OP_MAX. These two drawing modes compare each pixel in the source
image to the corresponding pixel in the destination image and select one to keep in the
result. If the source pixel is transparent, both modes select the destination pixel.
Otherwise, OP_MIN selects the darker of the two colors and OP_MAX selects the brighter
of the two. If the source image is a uniform shade of gray, for example, OP_MAX would
substitute that shade for every pixel in the destination image that was darker than the
gray.

Like OP_ADD, OP_SUBTRACT, and OP_BLEND, OP_MIN and OP_MAX work only for color
images.

Views and the Server

Just as windows lead a dual life—as on-screen entities provided by the Application
Server and as BWindow objects in the application—so too do views. Each BView
object has a shadow counterpart in the Server. The Server knows the view’s location, its
place in the window’s hierarchy, its visible area, and the current state of its graphics
parameters. Because it has this information, the Server can more efficiently associate a
user action with a particular view and interpret the BView’s drawing instructions.

BWindows become known to the Application Server when they’re constructed.
Creating a BWindow object causes the Server to produce the window that the user will
eventually see on-screen. A BView, on the other hand, has no effect on the Server when
it’s constructed. It becomes known to the Server only when it’s attached to a BWindow.
The Server must look through the application’s windows to see what views it has.

A BView that’s not attached to a window therefore lacks a counterpart in the Server.
This means that some functions can’t operate on unattached BViews. Three kinds of
functions are included in this group:

• Most obvious among them are the drawing functions—DrawBitmap(), FillRect(),
StrokeLine(), and so on. A BView can’t draw unless it’s in a window.

• Also included are functions that set and return graphics parameters—such as
DrawingMode(), SetFontSize(), ScrollTo(), and SetFrontColor(). A view’s graphic
state is kept within the Server (where it’s needed to carry out drawing
instructions). BViews that the Server doesn’t know about don’t have a valid
graphics state. It won’t work, for example, to create a BView, set its background

Drawing

DR3 The Interface Kit – 31

color, and then attach it to a window. The background color can be set only after
the BView belongs to the window.

• The group similarly includes functions that indirectly depend on a BView’s
graphics parameters—such as GetMouse(), which reports the cursor location in
the BView’s coordinates, and StringWidth(), which returns how much room a
string would take up in the BView’s font. These functions require information
that an unattached BView can’t provide.

Because of these restrictions, you may find it impossible to complete the initialization of
a BView at the time it’s constructed. Instead, you may need to wait until the BView
receives an AttachedToWindow() notification informing it that it has been added to a
window’s view hierarchy. AttachedToWindow() can be implemented to set graphics
parameters and to take care of any other final initialization that’s required.

When a BView is removed from a window, it loses its graphics environment. Thus if a
BView is moved to a different window or it changes its position in the view hierarchy of
the same window, its graphics parameters must be reset. AttachedToWindow() is called
to reset them.

The Update Mechanism

The Application Server sends a message to a BWindow whenever any of the views
within the window need to be updated. The BWindow then calls the Draw() function of
each out-of-date BView so that it can redraw the contents of its on-screen display.

Update messages can arrive at any time. A BWindow receives one whenever:

• The window is first placed on-screen, or is shown again after having been hidden.

• Any part of the window becomes visible after being obscured.

• The views in the window are rearranged—for example, if a view is resized or a
child is added or removed from the hierarchy.

• Something happens to alter what a particular view displays. For example, if the
contents of a view are scrolled, the BView must draw any new images that
scrolling makes visible. If one of its children moves, it must fill in the area the
child view vacated.

• The application forces an update by “invalidating” a view, or a portion of a view.

Update messages take precedence over other kinds of messages. To keep the on-screen
display as closely synchronized with event handling as possible, the window acts on
update messages as soon as they arrive. They don’t need to wait their turn in the
message queue.

Drawing

32 – The Interface Kit DR3

(Update messages do their work quietly and behind the scenes. You won’t find them in
the BWindow’s message queue, they aren’t handled by BWindow’s DispatchMessage()
function, and they aren’t returned by BLooper’s CurrentMessage().)

Forcing an Update

When a user action or a BView function alters a view in a window—for example, when
a view is resized or it’s contents are scrolled—the Application Server knows about it. It
makes sure that an update message is sent to the window so the view can be redrawn.

However, if code that’s specific to your application alters a view, you’ll need to inform
the Server that the view needs updating. This is done by calling the Invalidate()
function. For example, if you write a function that changes the number of elements a
view displays, you might invalidate the view after making the change, as follows:

void MyView::SetNumElements(long count)
{
 if (numElements == count)
 return;
 numElements = count;
 Invalidate();
}

Invalidate() ensures that the view’s Draw() function—which presumably looks at the
new value of the numElements data member—will be called automatically.

At times, the update mechanism may be too slow for your application. Update
messages arrive just like other messages sent to a window thread, including messages
that report events. Although they take precedence over other messages, update
messages must wait their turn. The window thread can respond to only one message at a
time; it will get the update message only after it finishes with the current one.

Therefore, if your application alters a view and calls Invalidate() while responding to an
event message, the view won’t be updated until the response to the event is finished and
the window thread is free to turn to the next message. Usually, this is soon enough. But
if it’s not, if the response to the event message includes some time-consuming
operations, the application can request an immediate update by calling BWindow’s
UpdateIfNeeded() function.

Erasing the Clipping Region

Just before sending an update message, the Application Server prepares the clipping
region of each BView that is about to draw by erasing it to the view color. Note that
only the clipping region is erased, not the entire view, and perhaps not the entire area
where the BView will, in fact, draw.

Drawing

DR3 The Interface Kit – 33

Drawing during an Update

While drawing, a BView may set and reset its graphics parameters any number of
times—for example, the pen position and front color might be repeatedly reset so that
whatever is drawn next is in the right place and has the right color. These settings are
temporary. When the update is over, all graphics parameters are reset to their initial
values.

If, for example, Draw() sets the front color to a shade of light blue, as shown below,

SetFrontColor(152, 203, 255);

it doesn’t mean that the front color will be blue when Draw() is called next. If this line
of code is executed during an update, light blue would remain the front color only until
the update ends or SetFrontColor() is called again, whichever comes first. When the
update ends, the previous graphics state, including the previous front color, is restored.

Although you can change most graphics parameters during an update—move the pen
around, reset the font, change the front color, and so on—the coordinate system can’t be
touched; a view can’t be scrolled while it’s being updated. Since scrolling causes a view
to be updated, scrolling during an update would, in effect, be an attempt to nest one
update in another, something that can’t logically be done (since updates happen
sequentially through messages). If the view’s coordinate system were to change, it
would alter the current clipping region and confuse the update mechanism.

Drawing outside of an Update

Graphics parameters that are set outside the context of an update are not limited; they
remain in effect until they’re explicitly changed. For example, if application code calls
Draw(), perhaps in response to an event, the parameter values that Draw() last sets would
persist even after the function returns. They would become the default values for the
view and would be assumed the next time Draw() is called.

Default graphics parameters are typically set as part of initializing the BView once it’s
attached to a window—in an AttachedToWindow() function. If you want a Draw()
function to assume the values set by AttachedToWindow(), it’s important to restore
those values after any drawing the BView does that’s not the result of an update. For
example, if a BView invokes SetFrontColor() while drawing in response to an event
message, it will need to restore the default front color when done.

If Draw() is called outside of an update, it can’t assume that the clipping region will have
been erased to the view color, nor can it assume that default graphics parameters will be
restored when it’s finished.

Drawing

34 – The Interface Kit DR3

Picking Pixels to Stroke and Fill

This section discusses how the various BView Stroke...() and Fill...() functions pick
specific pixels to color. Pixels are chosen after the pen size and all coordinate values
have been translated to device-specific units. The device-specific value measures
distances by counting pixels; one unit equals one pixel on the device.

A device-specific value can be derived from a coordinate value using a formula like this,
which takes the size of a coordinate unit and the resolution of the device into account:

device_value = coordinate_value × (dpi / 72)

dpi is the resolution of the device in dots (pixels) per inch, 72 is the number of
coordinate units in an inch, and device_value is rounded to the closest integer.

To describe where lines and shapes fall on the pixel grid, this section mostly talks about
pixel units rather than coordinate units. The accompanying illustrations magnify the
grid so that pixel boundaries are clear. As a consequence, they can show only very short
lines and small shapes; they therefore exaggerate the phenomena they illustrate.

Stroking Thin Lines

The thinnest possible line is drawn when the pen size translates to 1 pixel on the device.
Setting the size to 0.0 coordinate units guarantees that the pen will be a one-pixel square
on all devices.

A one-pixel pen follows the path of the line it strokes and makes the line exactly one
pixel thick. If the line is more vertical than horizontal, only one pixel in each row is used
to render the line. If the line is more horizontal than vertical, only one pixel in each
column is used.

Some illustrations of one-pixel thick lines are given below. The broken lines show the
separation of the display surface into pixels:

(g)(c)

(e)

(a)

(d)

(b)

(f)

Drawing

DR3 The Interface Kit – 35

The first thing to notice about this illustration is that only pixels that the line path
actually passes through are colored to display the line. If a path begins or ends on a
pixel boundary, as it does for lines (d) and (e), for example, the pixels at the boundary
aren’t colored unless the path crosses into the pixel. The pen touches the fewest
possible number of pixels.

It’s possible for a line path not to enter any pixels, but to lie entirely on the boundaries
between pixels. Such a line is not invisible. A horizontal path between pixels colors the
pixel row beneath it. A vertical path between pixels colors the pixel column to its right.
A line path that reduces to a single point lying on the corner of four pixels colors the
pixel at its lower right. The orientation of the pen is always toward the bottom and the
right.

< However, for the current release, it’s indeterminate which column or row of adjacent
pixels would be used to display vertical and horizontal lines like (h) and (i) above.
Point (j) would not be visible. >

Although a one-pixel pen touches only pixels that lie on the path it strokes, it won’t
touch every pixel that the path crosses if that would mean making the line thicker than
specified. When the path cuts though two pixels in a column or row, but only one of
those pixels can be colored, the one that contains more of the path (the one that contains
the midpoint of the segment cut by the column or row) is chosen. This is illustrated in
the close-up below, which shows where a mostly vertical line crosses one row of pixels:

However, before a choice is made as to which pixel in a row or column to color, the line
path is normalized for the device. For example, if a line is defined by two endpoints, it’s
first determined which pixels correspond to those endpoints. The line path is then
treated as if it connected the centers of those pixels. This may alter which pixels get

(h) (j)

(i)

Drawing

36 – The Interface Kit DR3

colored, as is illustrated below. In this illustration, the solid black line is the line path as
originally specified and the broken line is its normalized version:

This normalization is nothing more than the natural consequence of the rounding that
occurs when coordinate values are translated to device-specific pixel values.

Stroking Curved Lines

Although all the diagrams above show straight lines, the principles they illustrate apply
equally to curved line paths. A curved path can be treated as if it were made up of a
large number of short straight segments.

Filling and Stroking Rectangles

The following illustration shows how some rectangles, represented by the solid black
line, would be filled with a solid color.

A rectangle includes every pixel that it encloses and every pixel that its sides pass
through. However, as rectangle (n) illustrates, it doesn’t include pixels that its sides
merely touch at the boundary.

(m)

(l) (n)

(k)

Drawing

DR3 The Interface Kit – 37

If the pixel grid in this illustration represented the screen, rectangle (n) would have left,
top, right, and bottom coordinates with fractional values of .5. Rectangle (k), on the
other hand, would have coordinates without any fractional parts. Nonfractional
coordinates lie at the center of screen pixels.

Rectangle (k), in fact, is the normalized version of all four of the illustrated rectangles.
It shows how the sides of the four rectangles would be translated to pixel values. Note
that for a rectangle like (n), with edges that fall on pixel boundaries, normalization
means rounding the left and top sides upward and rounding the right and bottom sides
downward. This follows from the principal that the fewest possible number of pixels
should be colored.

Although the four rectangles above differ in size and shape, when filled they all cover a
6 × 4 pixel area. You can’t predict this area from the dimensions of the rectangle.
Because the coordinate space is continuous and x and y values can be located anywhere,
rectangles with different dimensions might have the same rendered size, as shown
above, and rectangles with the same dimensions might have different rendered sizes, as
shown below:

If a one-pixel pen strokes a rectangular path, it touches only pixels that would be
included if the rectangle were filled. The illustration below shows the same rectangles
that were presented above, but strokes them rather than fills them:

(p)(o)

(m′)

(l′) (n′)

(k′)

Drawing

38 – The Interface Kit DR3

Each of the rectangles still covers a 6 × 4 pixel area. Note that even though the path of
rectangle (n′) lies entirely on pixel boundaries, pixels below it and to its right are not
touched by the pen. The pen touches only pixels that lie within the rectangle.

If a rectangle collapses to a straight line or to a single point, it no longer contains any
area. Filling such a rectangle is equivalent to stroking the line path with a one-pixel pen,
as was discussed in the previous section. Stroking such a rectangle is equivalent to
stroking the line.

Filling and Stroking Polygons

The figure below shows a polygon as it would be stroked by a one-pixel pen and as it
would be filled:

The same rules apply when stroking each segment of a polygon as would apply if that
segment were an independent line. Therefore, the pen may not touch every pixel the
segment passes through.

When the polygon is filled, no additional pixels around its border are colored. As is the
case for a rectangle, the displayed shape of filled polygon is identical to the shape of the
polygon when stroked with a one-pixel pen. The pen doesn’t touch any pixels when
stroking the polygon that aren’t colored when the polygon is filled. Conversely, filling
doesn’t color any pixels at the border of the polygon that aren’t touched by a one-pixel
pen.

Stroking Thick Lines

A pen that’s thicker than one pixel touches the same pixels that a one-pixel pen does, but
it adds extra columns to the right of the path and extra rows beneath it.

(r)(q)

Drawing

DR3 The Interface Kit – 39

It’s as if the pen is a square that moves along the line path and stops on selected pixels.
When it stops, it colors every pixel that it covers. If the pen is a one-pixel square, it
covers only pixels that lie on the path. If it’s a multiple-pixel square, its left top corner
follows the path so that it also covers pixels below the path and to the right.

The following diagram outlines the position of a two-pixel pen at one stop along a line
path:

In the following example, rectangle (s) is stroked by a two-pixel pen and lines (t) and (u)
by a three-pixel pen. One of the positions of the pen on line (u) is outlined.

No matter what its size, the pen always stops at the same pixels on the line path.

(t)

(s) (u)

Handling Events

40 – The Interface Kit DR3

Handling Events

The BWindow and BView classes together define a structure for responding to user
actions on the keyboard and mouse. These actions generate interface events that are
reported to a BWindow object and that the BWindow distributes to other objects,
typically BViews.

This section describes interface events, the messages that report them, and the way that
BWindow and BView objects are structured to respond to them.

Interface Events

In most cases, an interface event merely reports what the user did. However, in some
cases, it may reflect the way the Application Server interpreted or handled a user action.
The Server might respond directly to the user action and pass along an event that reflects
what it did—moved a window or changed a value, for example. In a few cases, the
event may even reflect what the application thinks the user intended—that is, an
application might interpret one or more generic user actions as a more specific event.

Seventeen interface events are currently defined. The following five capture atomic user
actions on the keyboard and mouse:

• A key-down event occurs when the user presses a character key on the keyboard.
After the initial event (and a brief threshold), most keys generate repeated key-
down events—as long as the user continues to hold the key down and doesn’t
press another key. Only character keys produce keyboard events. The modifier
keys—Shift, Control, Caps Lock, and so on—don’t generate events of any kind
but may affect the character that’s reported for another key.

• A key-up event occurs when the user releases the character key. < This event isn’t
implemented for the current release. >

• A mouse-down event occurs when the user presses one of the mouse buttons while
the cursor is over the content area of a window. < The event is generated only for
the first button the user presses—that is, only if no other mouse buttons are down
at the time. >

• A mouse-up event occurs when the user releases the mouse button. < The event is
generated only for the last button the user releases—that is, only if no other mouse
button remains down. >

• A mouse-moved event captures some small portion of the cursor’s movement into,
within, or out of a window. If the cursor isn’t over a window, it’s movement
doesn’t generate mouse-moved events. (All interface events are associated with
windows.) Repeated mouse-moved events are generated as the user moves the
mouse.

Handling Events

DR3 The Interface Kit – 41

A closely related event announces the arrival of a package of information:

• A message-dropped event occurs when the user releases the mouse button after
dragging an image from one view to another. The image represents information
bundled in a BMessage object. The message is “dropped” on the view where the
cursor is located when the mouse button goes up.

The six events above are all directed at particular views. Three others also concern
views:

• A view-moved event occurs when a view is moved within its parent’s coordinate
system. This can be a consequence of a programmatic action or of the parent view
being automatically resized. If the parent view is being continuously resized
because the user is resizing the window, repeated mouse-moved events may be
recorded.

• A view-resized event occurs when a view is resized, perhaps because the program
resized it or possibly as an automatic consequence of the window being resized.
If the resizing is continuous, because the user is resizing the window, repeated
view-resized events are reported.

• A value-changed event occurs when the Application Server changes a value
associated with an object. Currently, the event is generated only for BScrollBar
objects. It’s generated repeatedly as the user manipulates a scroll bar.

A few events affect the window itself:

• An activation event happens when a window becomes the active window, and
when it gives up that status. The single action of clicking a window to make it
active might result in two activation events—one for the window that gains active-
window status and one for the window that relinquishes it—plus a mouse-down
and a mouse-up event.

• A quit-requested event occurs when the user clicks a window’s close box, or when
the system perceives some other reason to request the window to quit.

• A window-moved event records the new location of a window that has been
moved, either programmatically or by the user. When the user drags a window,
repeated events occur, each one capturing a small portion of the window’s
continuous movement. Only one event occurs when the program moves a
window.

• A window-resized event occurs when the window is resized, again either
programmatically or by the user. The event is generated repeatedly as the user
resizes the window, but only once each time the application resizes it.

Handling Events

42 – The Interface Kit DR3

• A screen-changed event occurs when the configuration of the screen—the size of
the pixel grid it displays < or the color space of the frame buffer >—changes.
Such changes may require the window to take compensatory measures.

Two events are produced by the save panel:

• A save-requested event occurs when the user operates the panel to request that a
document be saved.

• A panel-closed event occurs when the application or the user closes the panel.

Finally, there’s one event that doesn’t derive from a user action:

• Periodic pulse events occur at regularly spaced intervals, like a steady heartbeat.
Pulses don’t involve any communication between the application and the Server.
They’re generated as long as no other events are pending, but only if the
application asks for them.

An application doesn’t have to wait for an event to discover what the user is doing on the
keyboard and mouse. Two BView functions, GetKeys() and GetMouse(), can provide
an immediate check on the state of these devices.

Hook Functions for Interface Events

Events are reported to an application as they occur. The Application Server determines
which window an event affects and notifies the appropriate window thread. Keyboard
events are reported to the current active window, mouse events to the window where the
cursor is located.

Reports of events are delivered as BMessage objects. When a message arrives, the
BWindow dispatches it to initiate action within the window thread. Typically, one of the
BViews associated with the window is asked to respond to the message—usually the
BView that drew the image that elicited the user action. But some messages are handled
by the BWindow itself.

Interface events are dispatched by calling a virtual function that’s matched to the event.
For example, the BView where a mouse-down event occurs is notified with a
MouseDown() function call. When the user clicks the close box of a window, generating
a quit-requested event, the BWindow’s QuitRequested() function is called.

The chart below lists the virtual functions that are called to initiate the application’s
response to interface events, and the base classes where the functions are declared.
Each application can implement these event-specific functions in a way that’s
appropriate to its purposes.

Event type Virtual function Class

Key-down KeyDown() BView
Key-up none
Mouse-down MouseDown() BView

Handling Events

DR3 The Interface Kit – 43

Mouse-up none
Mouse-moved MouseMoved() BView

Message-dropped MessageDropped() BView

View-moved FrameMoved() BView
View-resized FrameResized() BView
Value-changed ValueChanged() BScrollBar

Window-activated WindowActivated() BWindow and BView
Quit-requested QuitRequested() BLooper, inherited by BWindow
Window-moved FrameMoved() BWindow
Window-resized FrameResized() BWindow
Screen-changed ScreenChanged() BWindow

Save-requested SaveRequested() BWindow
Panel-closed() SavePanelClosed() BWindow

Pulse Pulse() BView

< Key-up events are currently not reported. > Mouse-up events are reported to the
application, but they aren’t dispatched by calling a virtual function. A BView can
determine when a mouse button goes up by calling GetMouse() from within its
MouseDown() function. As it reports information about the location of the cursor and
the state of the mouse buttons, GetMouse() removes mouse-moved and mouse-up
messages from the BWindow’s message queue, so the same information won’t be
reported twice.

Dispatching

Notice, from the chart above, that the BWindow class declares the functions that handle
events directed at the window itself. FrameMoved() is called when the user moves the
window, FrameResized() when the user resizes it, WindowActivated() when it becomes,
or ceases to be, the active window, and so on.

Although the BWindow handles some interface events, most are handled by BViews.
When the BWindow receives an event message, it must decide which view is
responsible.

This decision is relatively easy for mouse events. The cursor points to the affected view.
For example, when the user presses a mouse button, the BWindow calls the
MouseDown() virtual function of the view under the cursor. When the user moves the
mouse, it calls the MouseMoved() function of each view the cursor travels through.
When the user drags a message to a window and drops it there, it calls the
MessageDropped() function of the view the cursor points to.

However, there’s no cursor attached to the keyboard, so the BWindow object must keep
track of the view that’s responsible for key-down events. That view is known as the
focus view.

Handling Events

44 – The Interface Kit DR3

The Focus View

The focus view is whatever view happens to be displaying the current selection
(possibly an insertion point) within the window, or whatever check box or other gadget
is marked to show that it can be operated from the keyboard.

The focus view is expected to handle keyboard events when the window is the active
window and to handle data pasted from the clipboard. When the user presses a key on
the keyboard, the BWindow calls the focus view’s KeyDown() virtual function. When
the user pastes material from the clipboard, the application should arrange for the focus
view to respond.

The focus doesn’t have to stay on one view all the time; it can shift from view to view. It
may change as the user changes the current selection in the window—from text field to
text field, for example. Only one view in the window can be in focus at a time.

Views put themselves in focus when they’re selected by a user action of some kind. For
example, when a BView’s MouseDown() or MessageDropped() function is called,
notifying it that the user has selected the view, it can grab the focus by calling
MakeFocus(). When a BView makes itself the focus view, the previous focus view is
notified that it has lost that status.

A view should become the focus view if:

• It has a KeyDown() function so that the user can operate it from the keyboard,
• It has a KeyDown() function to display typed characters, or
• It can show the current selection, whether or not it displays what the user types.

A view should highlight the current selection only while it’s in focus.

BViews make themselves the focus view (with the MakeFocus() function), but
BWindows report which view is currently in focus (with the CurrentFocus() function).

Handling Events

DR3 The Interface Kit – 45

Filtering Events

A BWindow can scrutinize mouse and keyboard events before it gives the target BView
a chance to respond. The BWindow class declares four hook functions that preview
events before a BView is notified:

FilterKeyDown(),
FilterMouseDown(),
FilterMouseMoved(), and
FilterMessageDropped()

These functions give BWindows an opportunity to modify aspect of the event or even
change the BView that will be expected to respond. Unless the BWindow completely
intercepts the event, the responsible BView is notified through its KeyDown(),
MouseDown(), MouseMoved(), or MessageDropped() function.

The filter functions are rarely implemented to prevent the BView functions from being
called. Since the response to an event depends on what prompted it—for example, a
click would mean one thing to a button and quite another to a text field—the principal
event-handling code must be located within BViews, not at the BWindow level.

Message Protocols

As noted above, reports of events are delivered to the window thread as BMessage
objects. The object’s what data member is always a constant that names what kind of
event it is. The constants for interface events are:

KEY_DOWN WINDOW_ACTIVATED
KEY_UP QUIT_REQUESTED
MOUSE_DOWN WINDOW_MOVED
MOUSE_UP WINDOW_RESIZED
MOUSE_MOVED SCREEN_CHANGED

MESSAGE_DROPPED SAVE_REQUESTED
 PANEL_CLOSED
VIEW_MOVED
VIEW_RESIZED PULSE
VALUE_CHANGED

Typically, the BMessage object also carries various kinds of data describing the event.
In some cases, it may contain more information about the event than is passed to the
function that starts the application’s response. For example, a MouseDown() function is
passed the point where the cursor was located when the user pressed the mouse button.
But a MOUSE_DOWN BMessage also includes information about when the event
occurred, what modifier keys the user was holding down at the time, < which mouse
button was pressed, whether the event counts as a solitary mouse-down, the second of a
double-click, or the third of a triple-click, and so on. >

Handling Events

46 – The Interface Kit DR3

A MouseDown() function can get this information by taking it directly from the
BMessage. The BMessage that the window thread is currently responding to can be
obtained by calling CurrentMessage(), which the BWindow inherits from BLooper. For
example, a MouseDown() function might get the time of the mouse-down event as
follows:

void MyView::MouseDown(BPoint point)
{
 . . .
 long time = Window()->CurrentMessage()->FindLong("when");
 . . .
}

With the exception of SAVE_REQUESTED and PANEL_CLOSED messages, all BMessages
that report interface events record when the event occurred. This information is placed
in the BMessage under the name “when” as a long integer.

For pulse and quit-requested events, “when” is the only data the BMessage contains.
There’s nothing else to know about the event. However, for most interface events, the
BMessage carries additional information describing the content of the event—which
key was pressed, where the cursor was pointing, what the new value is, and so on.

The following sections list the data that’s available within the BMessage objects that
report interface events:

Key-Down Events

Data name Type code Description

“when” LONG_TYPE When the key went down, as measured in
milliseconds from the time the machine
was last booted.

“key” LONG_TYPE The code for the key that was pressed.

“modifiers” LONG_TYPE A mask that identifies which modifier keys
the user was holding down and which
keyboard locks were on at the time of the
event.

“char” LONG_TYPE The character that’s generated by the
combination of the key and modifiers.

“states” UCHAR_TYPE A bit field that records the state of all keys
and keyboard locks at the time of the
event. Although declared as UCHAR_TYPE,
this is actually an array of 16 bytes.

For most applications, the “char” code is sufficient to distinguish one sort of user action
on the keyboard from another. It reflects both the key that was pressed and the effect
that the modifiers have on the resulting character. For example, if the Shift key is down

Handling Events

DR3 The Interface Kit – 47

when the user presses the A key, or if Caps Lock is on, the “char” produced will be
uppercase ‘A’ rather than lowercase ‘a’. If the Control key is down, it will be the HOME
character. A later section, “Keyboard Information” on page 53, discusses the mapping
of keys to characters in more detail.

The “modifiers” mask explicitly identifies which modifier keys the user is holding down
and which keyboard locks are on at the time of the event. It’s described under “Modifier
Keys” on page 57 below.

The “key” code is an arbitrarily assigned number that identifies which character key the
user pressed. All keys on the keyboard, including modifier keys, have key codes (but
only character keys produce key-down events). The codes for the keys on a standard
keyboard are shown in the “Key Codes” section on page 53.

The “states” bit field has one bit assigned to each key. For most keys, the bit is set to 1 if
the key is down, and to 0 if the key is up. However, the bits corresponding to keys that
toggle keyboard locks (the Caps Lock, Num Lock, and Scroll Lock keys) are set to 1 if
the lock is on, and to 0 if the lock is off. See “Key States” on page 61 for details on how
to read information from the “states” array.

Key-Up Events

< Key-up events are not currently reported. >

Mouse-Down Events

Data name Type code Description

“when” LONG_TYPE When the mouse button went down, as
measured in milliseconds from the time
the machine was last booted.

“where” POINT_TYPE Where the cursor was located when the
user pressed the mouse button, expressed
in the coordinate system of the target
BView—the view where the cursor was
located at the time of the event.

“modifiers” LONG_TYPE A mask that identifies which modifier keys
were down and which keyboard locks were
on when the user pressed the mouse
button.

The “modifiers” mask is the same as for key-down events and is described under
“Modifier Keys” on page 57.

Handling Events

48 – The Interface Kit DR3

Mouse-Up Events

Data name Type code Description

“when” LONG_TYPE When the mouse button went up again, as
measured in milliseconds from the time
the machine was last booted.

“where” POINT_TYPE Where the cursor was located when the
user released the mouse button, expressed
in the coordinate system of the target
BView—the view where the cursor was
located when the button went up.

“modifiers” LONG_TYPE A mask that identifies which of the
modifier keys were down and which
keyboard locks were in effect when the
user released the mouse button.

The “modifiers” mask is the same as for key-down events and is described under
“Modifier Keys” on page 57.

Mouse-Moved Events

Data name Type code Description

“when” LONG_TYPE When the event occurred, as measured in
milliseconds from the time the machine
was last booted.

“where” POINT_TYPE The new location of the cursor, where it
has moved to, expressed in window
coordinates.

“area” LONG_TYPE The area of the window where the cursor is
now located.

“buttons” LONG_TYPE Which mouse buttons, if any, are down.

“dragging” OBJECT_TYPE A pointer to a BMessage object that the
user is dragging, or NULL if nothing is
being dragged.

The “area” constant records which part of the window the cursor is over. It can be:

CONTENT_AREA The cursor is over the content area of the window.
CLOSE_BOX The cursor is over the close box in the title bar.
TITLE_BAR The cursor is inside the title tab, but not over the close box.
RESIZE_AREA The cursor is over the area where the window can be resized.
UNKNOWN_AREA It’s not known where the cursor is.

Handling Events

DR3 The Interface Kit – 49

If the location of the cursor is unknown, it’s probably because it just left the window.

< Currently, no distinction is made between the different buttons on a mouse. The
“buttons” variable will be 0 when the user moves the mouse without holding down any
of its buttons, and something other than 0 when a button is held down. >

Message-Dropped Events

Data name Type code Description

“when” LONG_TYPE When the message was dropped, as
measured in milliseconds from the time
the machine was last booted.

“where” POINT_TYPE Where the cursor was located when the
user released the mouse button to drop the
dragged message. The point is expressed
in window coordinates.

A MESSAGE_DROPPED BMessage simply informs the window that another BMessage
has been dragged to it and dropped on one of its views. The dropped BMessage is
passed to the BView as an argument in a MessageDropped() function call; it’s not
recorded as part of the message-dropped event.

View-Moved Events

Data name Type code Description

“when” LONG_TYPE When the view moved, as measured in
milliseconds from the time the machine
was last booted.

“where” POINT_TYPE The new location of the left top corner of
the view’s frame rectangle, expressed in
the coordinate system of its parent.

View-Resized Events

Data name Type code Description

“when” LONG_TYPE When the view was resized, as measured
in milliseconds from the time the machine
was last booted.

“width” LONG_TYPE The new width of the view’s frame
rectangle.

“height” LONG_TYPE The new height of the view’s frame
rectangle.

Handling Events

50 – The Interface Kit DR3

“where” POINT_TYPE The new location of the left top corner of
the view’s frame rectangle, expressed in
the coordinate system of its parent. (A
“where” entry is present only if the view
was moved while being resized.)

A VIEW_RESIZED BMessage has a “where” entry only if resizing the view also served to
move it. The new location of the view would first be reported in a VIEW_MOVED
BMessage.

Value-Changed Events

Data name Type code Description

“when” LONG_TYPE When the value changed, as measured in
milliseconds from the time the machine
was last booted.

“value” LONG_TYPE The new value of the object.

Window-Activated Events

Data name Type code Description

“when” LONG_TYPE When the window’s status changed, as
measured in milliseconds from the time
the machine was last booted.

“active” BOOL_TYPE A flag that records the new status of the
window. It’s TRUE if the window has
become the active window, and FALSE if it
is giving up that status.

Quit-Requested Events

Data name Type code Description

“when” LONG_TYPE When the event occurred, as measured in
milliseconds from the time the machine
was last booted.

This data entry is added by the Application Server whenever it posts a QUIT_REQUESTED
message—for example, when the user clicks the window’s close box. However, it’s not
crucial to the interpretation of the event. You don’t need to add it to messages that are
posted in application code.

Handling Events

DR3 The Interface Kit – 51

Window-Moved Events

Data name Type code Description

“when” LONG_TYPE When the window moved, as measured in
milliseconds from the time the machine
was last booted.

“where” POINT_TYPE The new location of the left top corner of
the window’s content area, expressed in
screen coordinates.

Window-Resized Events

Data name Type code Description

“when” LONG_TYPE When the window was resized, as
measured in milliseconds from the time
the machine was last booted.

“width” LONG_TYPE The new width of the window’s content
area.

“height” LONG_TYPE The new height of the window’s content
area.

Screen-Changed Events

Data name Type code Description

“when” LONG_TYPE When the screen changed, as measured in
milliseconds from the time the machine
was last booted.

“frame” RECT_TYPE A rectangle with the same dimensions as
the pixel grid the screen displays.

“mode” LONG_TYPE The color space of the screen. < This will
always be COLOR_8_BIT. >

Handling Events

52 – The Interface Kit DR3

Save-Requested Events

Data name Type code Description

“directory” REF_TYPE A record_ref reference to the directory
where the document should be saved.

“name” STRING_TYPE The name of the file in which the
document should be saved.

These entries are added to all messages reporting save-requested events. Generally, the
message has SAVE_REQUESTED as its what data member. However, you can define a
custom message to report the event, one with another constant and additional data
entries. See RunSavePanel() in the BWindow class.

Panel-Closed Events

Data name Type code Description

“frame” RECT_TYPE The frame rectangle of the save panel in
screen coordinates at the time the panel
was closed. (The user may have resized it
and relocated it on-screen before it was
closed.)

“directory” REF_TYPE A record_ref reference to the last directory
displayed in the panel.

“canceled” < LONG_TYPE > An indication of whether or not the panel
was closed by user. It’s TRUE if the user
closed the panel by operating the “Cancel”
button < and FALSE otherwise. >
< Currently, this entry is present only if the
user canceled the panel. >

Pulse Events

Data name Type code Description

“when” LONG_TYPE When the event occurred, as measured in
milliseconds from the time the machine
was last booted.

Handling Events

DR3 The Interface Kit – 53

Keyboard Information

Most information about what the user is doing on the keyboard comes to applications by
way of key-down events. The application can usually determine what the user’s intent
was in pressing a key by looking at the character reported in the event. But, as discussed
under “Key-Down Events” on page 46 above, the event carries other keyboard
information in addition to the character—the key the user pressed, the modifier states
that were in effect at the time, and the current state of all keys on the keyboard.

Some of this information can be obtained in the absence of key-down events:

• The BWindow, BView, and BApplication classes have Modifiers() functions that
return the current modifier states, and

• The BView class has a GetKeys() function that can provide the current state of all
the keys and modifiers on the keyboard.

This section discusses in detail the kinds of information that you can get about the
keyboard through key-down events and these functions.

Key Codes

To talk about the keys on the keyboard, it’s necessary first to have a standard way of
identifying them. For this purpose, each key is arbitrarily assigned a numerical code.

The illustrations on the next two pages show the key identifiers for a typical keyboard.
The codes for the main keyboard are shown on page 54. This diagram shows a standard
101-key keyboard and an alternate version of the bottom row of keys—one that adds a
Menu key and left and right Command keys.

The codes for the numerical keypad and for the keys between it and the main keyboard
are shown on page 55.

Different keyboards locate keys in slightly different positions. The function keys may
be to the left of the main keyboard, for example, rather than along the top. The
backslash key (0x33) shows up in various places—sometimes above the Enter key,
sometimes next to Shift, and sometimes in the top row (as shown here). No matter
where these keys are located, they have the codes indicated in the illustrations.

The BMessage that reports a key-down event contains an entry named “key” for the
code of the key that was pressed.

Handling Events

54 – The Interface Kit DR3

Handling Events

DR3 The Interface Kit – 55

Kinds of Keys

Keys on the keyboard can be distinguished by the way they behave and by the kinds of
information they provide. A principal distinction is between character keys and
modifier keys:

• Character keys are mapped to particular characters; they generate key-down
events when pressed. Keys not mapped to characters don’t generate events.

• Modifier keys set states that can be discerned independently of key-down events
(through the various Modifiers() functions). Some modifier keys—like Caps Lock
and Num Lock—toggle in and out of a locked modifier state. Others—like Shift
and Control—set the state only while the key is being held down.

If a key doesn’t fall into one of these categories or the other, there’s nothing for it to do;
it has no role to play in the interface. For most keys, the categories are mutually
exclusive. Modifier keys are typically not mapped to characters, and character keys

Page
Down

0x360x35

Page
Up

0x21

Scroll
Lock

0x0f

Delete

0x34

0x1f 0x20

Sys
Rq

0x7e

Print
Screen

0x0e

0x7f

0x10

0x61 0x62 0x63

0x57

Break

Home

Pause

End

Insert

•
Delete

0x65

Num
Lock

0x22

*

0x24

/

0x23

4

0x48

6

0x4a

9
PgUp

0x39

8

0x38

7
Home

0x37

0
Insert

0x64

1
End

0x58

2

0x59

3
PgDn

0x5a

5

0x49

–

0x25

Enter

0x5b

+

0x3a

Handling Events

56 – The Interface Kit DR3

don’t set modifier states. However, the Scroll Lock key is an exception. It both sets a
modifier state and generates a character.

Keys can be distinguished on two other grounds as well:

• Repeating keys produce a continuous series of key-down events, as long as the
user holds the key down and doesn’t press another key. After the initial event,
there’s a slight delay before the key begins repeating, but then events are
generated in rapid succession.

All keys are repeating keys except for Pause, Break, and the three that set locks
(Caps Lock, Num Lock, and Scroll Lock). Even modifier keys like Shift and
Control would repeat if they were mapped to characters (but, since they’re not,
they don’t produce any key-down events at all).

• Dead keys are keys that don’t produce characters until the user strikes another key
(or the key repeats). If the key the user strikes after the dead key belongs to a
particular set, the two keys together produce one character (one key-down event).
If not, each produces a separate character. The key-down event for the dead key is
delayed until it can be determined whether it will be combined with another key to
produce just one event.

Dead keys are dead only when the Option key is held down. They’re most
appropriate for situations where the user can imagine a character being composed
of two distinguishable parts—such as ‘a’ and ‘e’ combining to form ‘æ’.

The system permits up to five dead keys. By default, they’re reserved for
combining diacritical marks with other characters. The diacritical marks are the
acute (´) and grave (`) accents, dieresis (¨), circumflex (ˆ), and tilde (˜).

There’s a system key map that determines the role that each key plays—whether it’s a
character key or a modifier key, which modifier states it sets, which characters it
produces, whether it’s dead or not, how it combines with other keys, and so on. The
map is shared by all applications.

Users can modify the key map with the Keyboard utility. Applications can look at it
(and perhaps modify it) by calling the system_key_map() global function. See that
function on page 277 for details on the structure of the map. The discussion here
assumes the default key map that comes with the computer.

Handling Events

DR3 The Interface Kit – 57

Modifier Keys

The role of a modifier key is to set a temporary, modal state. There are eight modifier
states—eight different kinds of modifier key—defined functionally. Three of them
affect the character that’s reported in a key-down event:

• The Shift key maps alphabetic keys to the uppercase version of the character, and
other keys to alternative symbols.

• The Control key maps alphabetic keys to Control characters—those with ASCII
values (character codes) below 0x20.

• The Option key maps keys to alternative characters, typically characters in an
extended set—those with ASCII values above 0x7f.

Two modifier keys permit users to give the application instructions from the keyboard:

• When the Command key is held down, the character keys perform keyboard
shortcuts.

• The Menu key initiates keyboard navigation of menus. Pressing and releasing a
Command key (without touching another key) accomplishes the same thing.

Three modifiers toggle in and out of locked states:

• The Caps Lock key reverses the effect of the Shift key for alphabetic characters.
With Caps Lock on, the uppercase version of the character is produced without
the Shift key, and the lowercase version with the Shift key.

• The Num Lock key similarly reverses the effect of the Shift key for keys on the
numeric keypad.

• The Scroll Lock key temporarily prevents the display from updating. (It’s up to
applications to implement this behavior.)

There are two things to note about these eight modifier states. First, since applications
can read the modifiers directly from the messages that report key-down events and
obtain them at other times by calling the Modifiers() and GetKeys() functions, they are
free to interpret the modifier states in any way they desire. They’re not tied to the
narrow interpretation of, say, the Control key given above. Control, Option, and Shift,
for example, often modify the meaning of a mouse event or are used to set other
temporary modes of behavior.

Second, the set of modifier states listed above doesn’t quite match the keys that are
marked on a typical keyboard. A standard 101-key keyboard has left and right
“Alt(ernate)” keys, but lacks those labeled “Command,” “Option,” or “Menu.”

Handling Events

58 – The Interface Kit DR3

The key map must, therefore, bend the standard keyboard to the required modifier states.
The default key map does this in three ways:

• Because the “Alt(ernate)” keys are close to the space bar and are easily accessible,
the default key map assigns them the role of Command keys.

• It turns the right “Control” key into an Option key. Therefore, there’s just one
functional Control key (on the left) and one Option key (on the right).

• It leaves the Menu key unmapped. It relies on the Command key as an adequate
alternative for initiating keyboard navigation of menus.

The illustration below shows the modifier keys on the main keyboard, with labels that
match their functional roles. Users can, of course, remap these keys with the Keyboard
utility. Applications can remap them by calling set_modifier_key() or
system_key_map().

Current modifier states are reported in a mask that can be tested against these constants:

SHIFT_KEY COMMAND_KEY CAPS_LOCK
CONTROL_KEY MENU_KEY NUM_LOCK
OPTION_KEY SCROLL_LOCK

The ..._KEY modifiers are set if the user is holding the key down. The ..._LOCK modifiers
are set only if the lock is on—regardless of whether the key that sets the lock happens to
be up or down at the time.

If it’s important to know which physical key the user is holding down, the one on the
right or the one on the left, the mask can be more specifically tested against these
constants:

LEFT_SHIFT_KEY RIGHT_SHIFT_KEY
LEFT_CONTROL_KEY RIGHT_CONTROL_KEY
LEFT_OPTION_KEY RIGHT_OPTION_KEY
LEFT_COMMAND_KEY RIGHT_COMMAND_KEY

If no keyboard locks are on and the user isn’t holding a modifier key down, the
modifiers mask will be 0.

The modifiers mask is returned by the various Modifiers() functions (defined by the
BApplication class in the Application Kit and by BWindow and BView in the Interface

Caps Lock

Shift

OptionCommandControl Command

Shift

Handling Events

DR3 The Interface Kit – 59

Kit). It’s returned, along with other information, by BView’s GetKeys() function. And
it’s also included as a “modifiers” entry in every BMessage that reports a keyboard or
mouse event.

Character Mapping

Most keys are mapped to more than one character. The precise character that the key
produces depends on which modifier keys are being held down and which lock states the
keyboard is in at the time the key is pressed.

A few examples are given in the table below:

Key Without With With With Shift With
Code Modifiers Shift Option & Option Control

0x15 ‘4’ ‘$’ ‘¢’ ‘4’
0x18 ‘7’ ‘&’ ‘¶’ ‘§’ ‘7’
0x26 TAB TAB TAB TAB TAB
0x2e ‘i’ ‘I’ TAB
0x38 UP_ARROW ‘8’ UP_ARROW ‘8’ UP_ARROW
0x40 ‘g’ ‘G’ ‘’ 0x1a
0x44 ‘l’ ‘L’ ‘æ’ ‘Æ’ PAGE_DOWN

0x51 ‘n’ ‘N’ ‘ñ’ ‘Ñ’ 0x0e
0x55 ‘/’ ‘?’ ‘÷’ ‘¿’ ‘/’

The mapping follows some fixed rules, including these:

• If a Command key is held down, the Control keys are ignored. Command trumps
Control. Otherwise, Command doesn’t affect the character that’s reported for the
key. If only Command is held down, the character that’s reported is the same as if
no modifiers were down; if Command and Option are held down, the character
that’s reported is the same as for Option alone; and so on.

• If a Control key is held down (without a Command key), Shift, Option, and all
keyboard locks are ignored. Control trumps the other modifiers (except for
Command).

• Num Lock applies only to keys on the numerical keypad. While this lock is on,
the effect of the Shift key is inverted. Num Lock alone yields the same character
that’s produced when a Shift key is down (and Num Lock is off). Num Lock plus
Shift yields the same character that’s produced without either Shift or the lock.

• Menu and Scroll Lock play no role in determining how keys are mapped to
characters.

Handling Events

60 – The Interface Kit DR3

The default key map also follows the conventional rules for Caps Lock and Control:

• Caps Lock applies only to the 26 alphabetic keys on the main keyboard. It serves
to map the key to the same character as Shift. Using Shift while the lock is on
undoes the effect of the lock; the character that’s reported is the same as if neither
Shift nor Caps Lock applied. For example, Shift-G and Caps Lock-G both are
mapped to uppercase ‘G’, but Shift-Caps Lock-G is mapped to lowercase ‘g’.

However, if the lock doesn’t affect the character, Shift plus the lock is the same as
Shift alone. For example, Caps Lock-7 produces ‘7’ (the lock is ignored) and
Shift-7 produces ‘&’ (Shift has an effect), so Shift-Caps Lock-7 also produces ‘&’
(only Shift has an effect).

• When Control is used with a key that otherwise produces an alphabetic character,
the character that’s reported has an ASCII value 0x40 less than the value of the
uppercase version of the character (0x60 less than the lowercase version of the
character). This often results in a character that is produced independently by
another key. For example, Control-I produces the TAB character and Control-L
produces PAGE_DOWN.

When Control is used with a key that doesn’t produce an alphabetic character, the
character that’s reported is the same as if no modifiers were on. For example,
Control-7 produces a ‘7’.

The Interface Kit defines constants for characters that aren’t normally represented by a
visible symbol. This includes the usual space and backspace characters, but most
invisible characters are produced by the function keys and the navigation keys located
between the main keyboard and the numeric keypad. The character values associated
with these keys are more or less arbitrary, so you should always use the constant in your
code rather than the actual character value. Many of these characters are also produced
by alphabetic keys when a Control key is held down.

The table below lists all the character constants defined in the Kit and the keys they’re
associated with.

Key Key Character
Label Code Reported

Backspace 0x1e BACKSPACE
Tab 0x26 TAB
Enter 0x47 ENTER
(space bar) 0x5e SPACE

Escape 0x01 ESCAPE
F1 – F12 0x02 through 0x0d FUNCTION_KEY
Print Screen 0x0e FUNCTION_KEY
Scroll Lock 0x0f FUNCTION_KEY
Pause 0x10 FUNCTION_KEY
System Request 0x7e 0xc8
Break 0x7f 0xca

Handling Events

DR3 The Interface Kit – 61

Key Key Character
Label Code Reported

Insert 0x1f INSERT
Home 0x20 HOME
Page Up 0x21 PAGE_UP
Delete 0x34 DELETE
End 0x35 END
Page Down 0x36 PAGE_DOWN

(up arrow) 0x57 UP_ARROW
(left arrow) 0x61 LEFT_ARROW
(down arrow) 0x62 DOWN_ARROW
(right arrow) 0x63 RIGHT_ARROW

Several keys are mapped to the FUNCTION_KEY character. An application can determine
which function key was pressed to produce the character by testing the key code against
these constants:

F1_KEY F6_KEY F11_KEY
F2_KEY F7_KEY F12_KEY
F3_KEY F8_KEY PRINT_KEY (the “Print Screen” key)
F4_KEY F9_KEY SCROLL_KEY (the “Scroll Lock” key)
F5_KEY F10_KEY PAUSE_KEY

Note that key 0x30 (P) is also mapped to FUNCTION_KEY when the Control key is held
down.

Key States

The “states” bit field that’s reported in a key-down message captures the state of all keys
and keyboard locks at the time of the event. At other times, you can obtain the same
information through BView’s GetKeys() function.

Although the “states” bit field is declared as UCHAR_TYPE, it’s not just a single uchar.
It’s really an array of 16 bytes,

uchar states[16];

with one bit standing for each key on the keyboard. Bits are numbered from left to right,
beginning with the first byte in the array, as illustrated on the next page.

Handling Events

62 – The Interface Kit DR3

Bit numbers start with 0 and match key codes. For example, bit 0x3c corresponds to the
A key, 0x3d to the S key, 0x3e to the D key, and so on. The first bit is 0x00, which
doesn’t correspond to any key. The first meaningful bit is 0x01, which corresponds to
the Escape key.

When a key is down, the bit corresponding to its key code is set to 1. Otherwise, the bit
is set to 0. However, for the three keys that toggle keyboard locks—Caps Lock (key
0x3b), Num Lock (key 0x22), and Scroll Lock (key 0x0f)—the bit is set to 1 if the lock
is on and set to 0 if the lock is off, regardless of the state of the key itself.

To test the “states” mask against a particular key,

• Select the byte in the “states” array that contains the bit for that key,
• Form a mask for the key that can be compared to that byte, and
• Compare the byte to the mask.

For example:

if (states[keyCode>>3] & (1 << (7 - (keyCode%8))))
 . . .

Here, the key code is divided by 8 to obtain an index into the states array. This selects
the byte (the uchar) in the array that contains the bit for that key. Then, the part of the
key code that remains after dividing by 8 is used to calculate how far a bit needs to be
shifted to the left so that it’s in the same position as the bit corresponding to the key.
This mask is compared to the states byte with the bitwise & operator.

0x07
0x06
0x05
0x04
0x03
0x02
0x01
0x00

0x0f
0x0e
0x0d
0x0c
0x0b
0x0a
0x09
0x08

0x12
0x11
0x10

0 0 0 0 0 0 0 0 0 0 0 . . .0 0 0 0 0 0 0 0

Guide to the Classes

DR3 The Interface Kit – 63

Guide to the Classes

The classes in the Interface Kit work together to define a program structure for drawing
and responding to events. The two classes at the core of the structure—BWindow and
BView—have been discussed extensively above. Other Kit classes either derive from
BWindow and BView or support the work of those that do. The Kit defines several
different kinds of BViews that you can use in your application, but each application
must also invent some BViews of its own, to do the drawing and event handling that’s
unique to it.

To learn about the Interface Kit for the first time, it’s recommended that you first read
this introduction, then look at the class descriptions in roughly the following order:

1 BWindow Windows are at the center of the user interface.
They’re where applications present themselves to
the user and where users do their work. All other
Interface Kit objects are associated with
BWindows in one way or another.

2 BView BView objects draw within windows and handle
most user actions on the keyboard and mouse.
Each object corresponds to a particular view, one
part of the window’s display. Several of the other
classes in the Interface Kit inherit from BView and
implement particular kinds of views—such as
buttons, text displays, and scroll bars. In
conjunction with the BWindow class, BView
defines the Kit’s mechanisms for drawing and
handling events.

3 BPoint and BRect These two classes define the basic data types for
coordinate geometry. They’re ubiquitous
throughout the kit.

4 BRegion and BPolygon Like BRect, these two classes define objects that
describe areas and shapes within a coordinate
system. They’re used by functions in the BView
class.

5 BBitmap This class defines objects that store bitmap data.
BBitmaps are passed to BView functions, which
place the bitmap images on-screen.

6 BScrollBar BScrollBar objects provide scroll bars for an
and BScrollView application, and a BScrollView sets up the scroll

bars for a target view. Scrolling is explained in the
BView and BScrollBar class descriptions.

7 BMenu, BMenuItem, These classes implement the Be menu system.
BMenuBar, and A BMenu object represents a menu list, and a

Guide to the Classes

64 – The Interface Kit DR3

BPopUpMenu BMenuItem represents a single item in the list. An
item can control a submenu—another BMenu
object—so menus can be hierarchically arranged.
A BMenuBar is the visible menu at the root of the
hierarchy.

8 BTextView A BTextView object displays text on-screen and
implements the user interface for editing and
selecting text.

9 BControl, BCheckBox, The BControl class is the base class for objects that
BRadioButton, and BButton implement control devices. The other three classes

are derived from BControl.

10 BListView A BListView is similar to the control classes. It
displays a list of items that the user can select and
invoke. This class is based on the BList class of
the Storage Kit.

11 BAlert A BAlert runs a modal window that alerts the user
to something and asks for a response. It’s a
convenience for putting warnings and dialogs on-
screen.

12 BStringView and BBox These are simple views that don’t respond to
events. A BStringView draws a string (such as a
label). A BBox draws a labeled box around other
views.

The class overview should help you determine which specific functions you need to turn
to in order to get more information about a class. The class constructor is often a good
place to start, as it contains general information on how instances of the class are
initialized.

If you haven’t already read about the BApplication object and messaging classes in the
Application Kit, be sure to do so. A program must have a BApplication object before it
can use the Interface Kit.

A reference to the Interface Kit follows. The classes are presented in alphabetical order,
beginning with BAlert.

Overview

DR3 The Interface Kit – 65

BAlert

Derived from: public BWindow

Declared in: <interface/Alert.h>

Overview

A BAlert places a modal window on-screen in front of other windows and keeps it there
until the user dismisses it. The window has a message for the user to read and one or
more buttons along the bottom that present various options for the user to choose
among. Clicking a button selects a course of action and dismisses the window (closes
it). The message might warn the user of something or convey some information that the
application doesn’t want the user to overlook. Typically, it asks a question that the user
must answer (by clicking the appropriate button).

The window stays on-screen only temporarily, until the user operates one of the buttons.
As long as it’s on-screen, other parts of the application’s user interface are disabled.
< However, the user can continue to move windows around and work in other
applications. >

It’s possible to design such a window using a BWindow object, some BButtons, and
other views. However, the BAlert class provides a simple way to do it. There’s no need
to construct views and arrange them, or call functions to show the window and then get
rid of it. All you do is:

• Construct the object,

• Call SetShortcut() if you want the user to be able to operate any buttons (other
than the default button) from the keyboard, and

• Call Go() to put the window on-screen.

For example:

BAlert *alert;
long result;

alert = new BAlert("", "Time’s up! Do you want to continue?",
 "Cancel", "Continue");
alert->SetShortcut("Cancel", ESCAPE);
result = alert->Go();

Constructor and Destructor

66 – The Interface Kit DR3

Go() doesn’t return until the user dismisses the window. When it returns, the window
will have been closed, the window thread will have been killed, and the BAlert object
will have been deleted.

The value Go() returns indicates which button dismissed the window. If the user clicked
the “Cancel” button in this example or pressed the Escape key, the return result would
be 1. If the user clicked “Continue”, the result would be 2. Since the BAlert sets up the
rightmost button as the default button for the window, the user could also operate the
“Continue” button by pressing the Enter key.

Constructor and Destructor

BAlert()

BAlert(const char *title, const char *information,
const char *firstButton,
const char *secondButton = NULL,
const char *thirdButton = NULL)

Creates a modal window and shows it on-screen. The window displays some textual
information for the user to read, and can have up to three buttons. There must be at least
a firstButton; the others are optional. The window must also have a title (which can be
an empty string, but not NULL), even though it won’t be displayed to the user. Modal
windows lack a title tab.

The buttons are arranged in a row at the bottom of the window so that one is always in
the right bottom corner. They’re placed from left to right in the order specified to the
constructor. If labels for three buttons are provided, firstButton will be on the left,
secondButton in the middle, and thirdButton on the right. If only two labels are
provided, firstButton will come first and secondButton will be in the right bottom corner.
If there’s just one label (firstButton), it will be at the right bottom location.

By default, the user can operate the rightmost button by pressing the Enter key.

After the BAlert is constructed, Go() must be called to place it on-screen.

See also: Go()

Member Functions

DR3 The Interface Kit – 67

Member Functions

FilterKeyDown()

virtual bool FilterKeyDown(ulong *aChar, BView **target)

Permits keyboard shortcuts to operate the buttons and dismiss the window. There’s no
need for your application to call or override this function. Call SetShortcut() to assign
shortcut characters to buttons.

See also: SetShortcut()

Go()

long Go(void)

Calls the Show() virtual function to place the window on-screen, sets the modal loop for
the BAlert in motion, and returns when the loop has quit and the window has been
closed. The value returned is the number of the button that the user operated (either by
clicking it or using its keyboard shortcut) to dismiss the window. Buttons are numbered
from left to right, beginning with 1.

To put an alert panel on-screen, simply construct a BAlert object, set its keyboard
shortcuts, if any, and call this function. See the example code in the “Overview” section
above.

See also: the BAlert constructor

MessageReceived()

virtual void MessageReceived(BMessage *message)

Closes the window in response to messages posted from the window’s buttons. There’s
no need for your application to call or override this function.

SetShortcut()

void SetShortcut(const char *button, char shortcut)

Sets a shortcut character that the user can type to operate the button. The button
argument must match one of the button labels passed to the constructor. By default,
ENTER is the shortcut for the rightmost button.

The shortcut doesn’t require the user to hold down a Command key or other modifier
(except for any modifiers that would normally be required to produce the shortcut
character).

The shortcut is valid only while the window is on-screen.

Member Functions

68 – The Interface Kit DR3

Overview

DR3 The Interface Kit – 69

BBitmap

Derived from: public BObject

Declared in: <interface/Bitmap.h>

Overview

A BBitmap object is a container for an image bitmap; it stores pixel data—data that
describes an image pixel by pixel. The class provides a way of specifying a bitmap from
raw data, and also a way of creating the data from scratch using the Interface Kit
graphics mechanism.

BBitmap functions manage the bitmap data and provide information about it. However,
they don’t do anything with the data. Placing the image somewhere so that it can be
seen is the province of BView functions—such as DrawBitmap() and DragMessage()—
not this class.

Bitmap Data

An image bitmap records the color values of pixels within a rectangular area. The pixels
in the rectangle, as on the screen, are arranged in rows and columns. The data is
specified in rows, beginning with the top row of pixels in the image and working
downward to the bottom row. Each row of data is aligned on a long word boundary and
is read from left to right.

New BBitmap objects are constructed with two pieces of information that prepare them
to store bitmap data—a bounds rectangle and a color space. For example, this code

BRect rect(0.0, 0.0, 39.0, 79.0);
BBitmap *image = new BBitmap(rect, COLOR_8_BIT);

constructs a bitmap of 40 rows and 80 pixels per row. Each pixel is specified by an 8-bit
color value.

Overview

70 – The Interface Kit DR3

The Bounds Rectangle

A BBitmap’s bounds rectangle serves two purposes:

• It sets the size of the image. A bitmap covers as many pixels as its bounds
rectangle encloses—under the assumption that one coordinate unit equals one
pixel, as it does when the display device is the screen.

Since a bitmap can’t contain a fraction of a pixel, the bounds rectangle shouldn’t
contain any fractional coordinates. Without fractional coordinates, each side of
the bounds rectangle will be aligned with a column or a row of pixels. The pixels
around the edge of the rectangle are included in the image, so the bitmap will
contain one more column of pixels than the width of the rectangle and one more
row than the rectangle’s height. (See the BRect class “Overview” on page 151 for
an illustration.)

• It establishes a coordinate system that can be used later by drawing functions,
such as DrawBitmap() and DragMessage(), to designate particular points or
portions of the image.

For example, if one BBitmap was constructed with this bounds rectangle,

BRect firstRect (0.0, 0.0, 60.0, 100.0);

and another with this rectangle,

BRect secondRect(60.0, 100.0, 120.0, 200.0);

they would both have the same size and shape. However, the coordinates
(60.0, 100.0) would designate the right bottom corner of the first bitmap, but the
left top corner of the second.

< If a BBitmap object enlists BViews to create the bitmap data, it must have a bounds
rectangle with (0.0, 0.0) at the left top corner. >

The Color Space

The color space of a bitmap determines its depth (how many bits of information are
stored for each pixel) and its interpretation (what the data values mean). These four
color spaces are currently defined:

MONOCHROME_1_BIT
GRAYSCALE_8_BIT
COLOR_8_BIT
RGB_24_BIT

In the RGB_24_BIT color space, the color of each pixel is specified as an rgb_color value.
In the COLOR_8_BIT color space, colors are specified as indices into the color map. In
the MONOCHROME_1_BIT color space, a value of 1 means black and 0 means white. (A

Overview

DR3 The Interface Kit – 71

more complete description of the four color spaces can be found under “Colors” on
page 24 of the introduction to this chapter.)

< Currently, bitmap data is stored only in the COLOR_8_BIT and MONOCHROME_1_BIT
color spaces, though it can also be specified in the RGB_24_BIT format. The
GRAYSCALE_8_BIT color space is not used at the present time. >

Specifying the Image

BBitmap objects begin life empty. When constructed, they allocate sufficient memory
to store an image of the size and color space specified. However, the memory isn’t
initialized. The actual image must be set after construction. This can be done by
explicitly assigning pixel values with the SetBits() function:

image->SetBits(rawData, numBytes, 0, COLOR_8_BIT);

In addition to this function, BView objects can be enlisted to produce the bitmap. Views
are assigned to a BBitmap object just as they are to a BWindow (by calling the
AddChild() function). In reality, the BBitmap sets up a private, off-screen window for
the views. When the views draw, the window renders their output into the bitmap buffer.
The rendered image has the same format as the data captured by the SetBits() function.
SetBits() and BViews can be used in combination to create a bitmap.

The BViews that construct a bitmap behave a bit differently than the BViews that draw
in regular windows:

• In contrast to BViews attached to an ordinary window, the BViews assigned to a
BBitmap can create an image off-screen. When an ordinary window is hidden, it
doesn’t render images; its BViews may draw, but they don’t produce image data.
However, the BViews assigned to a BBitmap produce an off-screen bitmap.

• Because they never appear on-screen, the BViews that produce a bitmap image
never handle events and never get update messages telling them to draw. You
must call their drawing functions directly in your own code.

This is typically done just once, to create the bitmap. After that, the BViews can
be discarded; they’ll never be called upon to update the image. However, if the
bitmap will change—perhaps to reflect decisions the user makes as the program
runs—the BViews can be retained to make the changes.

• A BBitmap has no background color against which images are drawn. Your code
must color every pixel within the bounds rectangle.

So that you can manage the BViews that are assigned to a BBitmap, the BBitmap class
duplicates a number of BWindow functions—such as AddChild(), FindView(), and
ChildAt().

A BBitmap that enlists views to produce the bitmap consumes more system resources
than one that relies solely on SetBits(). Therefore, by default, BBitmaps refuse to accept

Constructor and Destructor

72 – The Interface Kit DR3

BViews. If BViews will be used to create bitmap data, the BBitmap constructor must be
informed so that it can set up the off-screen window and prepare the rendering
mechanism.

Transparency

Color bitmaps can have transparent pixels. When the bitmap is imaged in a drawing
mode other than OP_COPY, its transparent pixels won’t be transferred to the destination
view. The destination image will show through wherever the bitmap is transparent.

To introduce transparency into a COLOR_8_BIT bitmap, a pixel can be assigned a value of
TRANSPARENT_8_BIT. In a RGB_24_BIT bitmap, a pixel can be assigned the special value
of TRANSPARENT_24_BIT. (Or TRANSPARENT_24_BIT can be made the front or background
color of the BView drawing the bitmap.)

Transparency is covered in more detail under “Drawing Modes” on page 27 of the
chapter introduction.

See also: system_colors() global function

Constructor and Destructor

BBitmap()

BBitmap(BRect bounds, color_space mode, bool acceptsViews = FALSE)

Initializes the BBitmap to the size and internal coordinate system implied by the bounds
rectangle and to the depth and color interpretation specified by the mode color space.

This function allocates enough memory to store data for an image the size of bounds at
the depth required by mode, but does not initialize any of it. All pixel data should be
explicitly set using the SetBits() function, or by enlisting BViews to produce the bitmap.
If BViews are to be used, the constructor must be informed by setting the acceptsViews
flag to TRUE. This permits it to set up the mechanisms for rendering the image, including
an off-screen window to contain the views.

< If the BBitmap accepts BViews, the left and top sides of its bounds rectangle must be
located at 0.0. >

Member Functions

DR3 The Interface Kit – 73

~BBitmap()

virtual ~BBitmap(void)

Frees all memory allocated to hold image data, deletes any BViews used to create the
image, gets rid of the off-screen window that held the views, and severs the BBitmaps’s
connection to the Application Server.

Member Functions

AddChild()

virtual void AddChild(BView *aView)

Adds aView to the hierarchy of views associated with the BBitmap, attaching it to an
off-screen window (one created by the BBitmap for just this purpose) by making it a
child of the window’s top view. If aView already has a parent, it’s removed from that
view hierarchy and adopted into this one. A view can serve only one window at a time.

Like AddChild() in the BWindow class, this function calls the BView’s
AttachedToWindow() function to inform it that it now belongs to a view hierarchy.
Every view that descends from aView also becomes attached to the BBitmap’s off-
screen window and receives its own AttachedToWindow() notification.

AddChild() fails if the BBitmap was not constructed to accept views.

See also: AddChild() in the BWindow class, AttachedToWindow() in the BView class,
RemoveChild(), the BBitmap constructor

Bits()

inline void *Bits(void) const

Returns a pointer to the bitmap data. The data lies in memory shared by the application
and the Application Server. The length of the data can be obtained by calling
BitsLength()—or it can be calculated from the height of the bitmap (the number of rows)
and the number of bytes per row.

See also: Bounds(), BytesPerRow(), BitsLength()

BitsLength()

inline long BitsLength(void) const

Returns the number of bytes that were allocated to store the bitmap data.

See also: Bits(), BytesPerRow()

Member Functions

74 – The Interface Kit DR3

Bounds()

inline BRect Bounds(void) const

Returns the bounds rectangle that defines the size and coordinate system of the bitmap.
This should be identical to the rectangle used in constructing the object.

See also: the BBitmap constructor

BytesPerRow()

inline long BytesPerRow(void) const

Returns how many bytes of data are required to specify a row of pixels. For example, a
monochrome bitmap (one bit per pixel) 80 pixels wide would require twelve bytes per
row (96 bits). The extra sixteen bits at the end of the twelve bytes are ignored. Every
row of bitmap data is aligned on a long word boundary.

ChildAt(), CountChildren()

BView *ChildAt(long index) const

long CountChildren(void) const

ChildAt() returns the child BView at index, or NULL if there’s no child at index. Indices
begin at 0 and count only BViews that were added to the BBitmap (added as children of
the top view of the BBitmap’s off-screen window) and not subsequently removed.

CountChildren() returns the number of BViews the BBitmap currently has. (It counts
only BViews that were added directly to the BBitmap, not BViews farther down the
view hierarchy.)

< Do not rely on these functions as they may not remain in the API. >

These functions fail if the BBitmap wasn’t constructed to accept views.

See also: ChildAt() in the BWindow class

ColorSpace()

inline color_space ColorSpace(void) const

Returns the color space of the data being stored (not necessarily the color space of the
data passed to the SetBits() function). Once set by the BBitmap constructor, the color
space doesn’t change.

The color_space data type is defined in interface/InterfaceDefs.h and is explained on
page 24 and in the overview above.

See also: the BBitmap constructor

Member Functions

DR3 The Interface Kit – 75

CountChildren() see ChildAt()

FindView()

BView *FindView(BPoint point) const
BView *FindView(const char *name) const

Returns the BView located at point within the bitmap, or the BView tagged with name.
The point must be somewhere within the BBitmap’s bounds rectangle, which must have
the coordinate origin, (0.0, 0.0), at its left top corner.

If the BBitmap doesn’t accept views, this function fails. If no view draws at the point
given, or no view associated with the BBitmap has the name given, it returns NULL.

See also: FindView() in the BView class

Lock(), Unlock()

bool Lock(void)

void Unlock(void)

These functions lock and unlock the off-screen window where BViews associated with
the BBitmap draw. Locking works for this window and its views just as it does for
ordinary on-screen windows.

Lock() returns FALSE if the BBitmap doesn’t accept views or if its off-screen window is
unlockable (and therefore unusable) for some reason. Otherwise, it doesn’t return until
it has the window locked and can return TRUE.

See also: Lock() in the BWindow class

RemoveChild()

virtual bool RemoveChild(BView *aView)

Removes aView from the hierarchy of views associated with the BBitmap, but only if
aView was added to the hierarchy by calling BBitmaps’s version of the AddChild()
function.

If aView is successfully removed, RemoveChild() returns TRUE. If not, it returns FALSE.

See also: AddChild()

Member Functions

76 – The Interface Kit DR3

SetBits()

void SetBits(const void *data, long length, long offset, color_space mode)

Assigns length bytes of data to the BBitmap. The new data is copied into the bitmap
beginning offset bytes from the start of allocated memory. To set data beginning with
the first (left top) pixel in the image, the offset should be 0.

The data is specified in the mode color space, which may or may not be the same as the
color space that the BBitmap uses to store the data. If not, a conversion is automatically
made. < Currently, only RGB_24_BIT data is converted, to COLOR_8_BIT data. In the
conversion, colors are dithered, so that the resulting image will match the original as
closely as possible, despite the lost information. SetBits() rejects data in
GRAYSCALE_8_BIT mode. >

This function works for all BBitmaps, whether or not BViews are also enlisted to
produce the image.

Overview

DR3 The Interface Kit – 77

BBox

Derived from: public BView

Declared in: <interface/Box.h>

Overview

A BBox draws a labeled border around other views. It serves only to label those views
and organize them visually. It doesn’t respond to events.

The border is drawn around the edge of the view’s frame rectangle. If the BBox has a
label, the border at the top of box is broken where the label appears (and the border is
inset from the top somewhat to make room for the label).

The current pen size of the view determines the width of the border, which by default is
1 coordinate unit. The label is drawn in the current font, which AttachedToWindow()
sets to a 9-point “geneva.” Both the border and the label are drawn in the current front
color; the default front color is black.

The views that the box encloses should be made children of the BBox object.

Constructor and Destructor

BBox()

BBox(BRect frame, const char *name = NULL,
ulong resizingMode = FOLLOW_LEFT_TOP,
ulong flags = WILL_DRAW)

Initializes the BBox by passing all arguments to the BView constructor. The new object
doesn’t have a label; call SetLabel() to assign it one.

See also: SetLabel()

~BBox()

virtual ~BBox(void)

Frees the label, if the BBox has one.

Member Functions

78 – The Interface Kit DR3

Member Functions

AttachedToWindow()

virtual void AttachedToWindow(void)

Sets the default font for drawing the label to the 9-point “geneva” bitmap font.

This function is called by the Interface Kit; you shouldn’t call it yourself. However, you
can reimplement it to set a different font and other graphics parameters—such as the
front color and pen size that will be used to draw the box.

See also: AttachedToWindow() in the BView class

Draw()

virtual void Draw(BRect updateRect)

Draws the box and its label. This function is called automatically in response to update
messages.

See also: Draw() in the BView class

SetLabel(), Label()

void SetLabel(const char *string)

const char *Label(void) const

These functions set and return the label that’s displayed along the top edge of the box.
SetLabel() copies string and makes it the BBox’s label, freeing the previous label, if any.
If string is NULL, it removes the current label and frees it.

Label() returns a pointer to the BBox’s current label, or NULL if it doesn’t have one.

Overview

DR3 The Interface Kit – 79

BButton

Derived from: public BControl

Declared in: <interface/Button.h>

Overview

A BButton object draws a labeled button on-screen and responds when the button is
clicked or when it’s operated from the keyboard. If the BButton is the default button for
its window and the window is the active window, the user can operate it by pressing the
Enter key.

BButtons have a single state. Unlike check boxes and radio buttons, the user can’t
toggle a button on and off. However, the button’s value changes while it’s being
operated. During a click (while the user holds the mouse button down and the cursor
points to the button on-screen), the BButton’s value is set to 1. Otherwise, the value
is 0.

This class, like BCheckBox and BRadioButton, depends on the control framework
defined in the BControl class. In particular, it calls these BControl functions:

• SetValue() to make each change in the BControl’s value. This is a hook function
that you can override to take collateral action when the value changes.

• Invoke() to post a message each time the button is clicked or operated from the
keyboard. You can designate the object that should receive the message by calling
BControl’s SetTarget() function. A model for the message is set by the BButton
constructor (or by BControl’s SetMessage() function).

• IsEnabled() to determine how the button should be drawn and whether it’s
enabled to post a message. You can call BControl’s SetEnabled() to enable and
disable the button.

A BButton is an appropriate control device for initiating an action. Use a BCheckBox
or BRadioButtons to set a state.

Hook Functions

80 – The Interface Kit DR3

Hook Functions

MakeDefault() Makes the BButton the default button for its window or
removes that status; can be augmented by derived classes
to take note when the status of the button changes.

Constructor

BButton()

BButton(BRect frame, const char *name,
const char *label,
BMessage *message,
ulong resizingMode = FOLLOW_LEFT_TOP,
ulong flags = WILL_DRAW)

Initializes the BButton by passing all arguments to the BControl constructor. BControl
initializes the button’s label and assigns it a model message that identifies the action that
should be carried out when the button is invoked.

The frame, name, resizingMode, and flags arguments are the same as those declared for
the BView class and are passed up the inheritance hierarchy to the BView constructor
without change.

See also: the BControl and BView constructors, Invoke() in the BControl class

Member Functions

AttachedToWindow()

virtual void AttachedToWindow(void)

Augments the BControl version of this function to make sure that the BButton does not
consider itself the default button for the window to which it has just become attached—
even if it may have been the default button for the window to which it was previously
attached.

This version of AttachedToWindow() incorporates the BControl version.

See also: AttachedToWindow() in the BControl and BView classes, MakeDefault()

Member Functions

DR3 The Interface Kit – 81

Draw()

virtual void Draw(BRect updateRect)

Draws the button and labels it. If the BButton’s value is anything but 0, the button is
highlighted. If it’s disabled, it drawn in muted shades of gray. Otherwise, it’s drawn in
its ordinary, enabled, unhighlighted state.

See also: Draw() in the BView class

IsDefault() see MakeDefault

KeyDown()

virtual void KeyDown(ulong aChar)

Responds to a key-down event that reports that the user pressed the Enter key by:

• Momentarily highlighting the button and changing its value, and
• Posting a copy of the model BMessage to the target receiver.

This function is called if:

• The window the button is in is the active window,
• The BButton is the default button for the window, and
• aChar is ENTER.

It might also be called if the BButton object is the focus view for the active window, but
BButtons normally don’t make themselves the focus for keyboard events.

See also: Invoke() in the BControl class, MakeDefault()

MakeDefault(), IsDefault()

virtual void MakeDefault(bool flag)

bool IsDefault(void) const

MakeDefault() makes the BButton the default button for its window when flag is TRUE,
and removes that status when flag is FALSE. The default button is the button the user can
operate by striking the Enter key when the window is the active window. IsDefault()
returns whether the BButton is currently the default button.

A window can have only one default button at a time. Setting a new default button,
therefore, may deprive another button of that status. When MakeDefault() is called with
an argument of TRUE, it generates a MakeDefault() call with an argument of FALSE for
previous default button. Both buttons are redisplayed so that the user can see which one
is currently the default.

Member Functions

82 – The Interface Kit DR3

The default button can also be set by calling BWindow’s SetDefaultButton() function.
That function makes sure that the button that’s forced to give up default status and the
button that obtains it are both notified through MakeDefault() function calls.

MakeDefault() is therefore a hook function that can be augmented to take note each time
the default status of the button changes. It’s called once for each change in status, no
matter which function initiated the change.

See also: SetDefault() in the BWindow class

MouseDown()

virtual void MouseDown(BPoint point)

Responds to a mouse-down event in the button by tracking the cursor while the user
holds the mouse button down. As the cursor moves in and out of the button, the
BButton’s value is reset accordingly. The SetValue() virtual function is called to make
the change each time.

If the cursor is inside the BButton’s bounds rectangle when the user releases the mouse
button, this function posts a copy of the model message so that it will be dispatched to
the target receiver.

See also: MessageReceived() in the BReceiver class, Invoke() and SetTarget() in the
BControl class

Overview

DR3 The Interface Kit – 83

BCheckBox

Derived from: public BControl

Declared in: <interface/CheckBox.h>

Overview

A BCheckBox object draws a labeled check box on-screen and responds to a click by
changing the state of the device. A check box has two states: An “X” is displayed in the
box when the object’s value is 1 (on), and is absent when the value is 0 (off). The
BCheckBox is invoked (it posts a message to the target receiver) whenever its value
changes in either direction—when it’s turned on and when it’s turned off.

A check box is an appropriate control device for setting a state—turning a value on and
off. Use menu items or buttons to initiate actions within the application.

Constructor

BCheckBox()

BCheckBox(BRect frame, const char *name, const char *label,
BMessage *message,
ulong resizingMode = FOLLOW_LEFT_TOP,
ulong flags = WILL_DRAW)

Initializes the BCheckBox by passing all arguments to the BControl constructor.
BControl initializes the label of the check box and assigns it a model message that
encapsulates the action that should be taken when the state of the check box changes.

The frame, name, resizingMode, and flags arguments are the same as those declared for
the BView class and are passed unchanged to the BView constructor.

The frame rectangle of a BCheckBox should be at least 11.0 units high to accommodate
the check box and the label in the default font. The object draws at the bottom of its
frame rectangle beginning at the left side; it doesn’t use any extra space there may
happen to be at the top or on the right. (However, the user can click anywhere within the
frame rectangle to operate the check box).

See also: the BControl and BView constructors

Member Functions

84 – The Interface Kit DR3

Member Functions

Draw()

virtual void Draw(BRect updateRect)

Draws the check box and its label. If the current value of the BCheckBox is 1, it’s
marked with an “X”. If the value is 0, it’s empty.

See also: Draw() in the BView class

MouseDown()

virtual void MouseDown(BPoint point)

Responds to a mouse-down event within the check box by tracking the cursor while the
user holds the mouse button down. If the cursor is inside the bounds rectangle when the
user releases the mouse button, this function toggles the value of the BCheckBox and
calls Draw() to redisplay it. If the box was empty before the mouse-down event, it will
be marked afterward; if marked before, it will be empty afterwards.

When the value of the BCheckBox changes, a copy of the model BMessage is posted so
that it can be delivered to the object’s target receiver. See BControl’s Invoke() and
SetTarget() functions for more information. The message is dispatched by calling the
target’s MessageReceived() virtual function.

The receiver can get a pointer to the BCheckBox from the message, and use it to
discover the object’s new value. For example:

void MyReceiver::MessageReceived(BMessage *msg)
{
 . . .
 BCheckBox *box = (BCheckBox *)msg->FindObject("source");
 if (message->Error() == NO_ERROR) {
 long value = box->Value();
 . . .
 }
 . . .
}

See also: Invoke(), SetTarget(), and SetValue() in the BControl class

Overview

DR3 The Interface Kit – 85

BControl

Derived from: public BView

Declared in: <interface/Control.h>

Overview

BControl is an abstract class for views that draw control devices on the screen. Objects
that inherit from BControl emulate, in software, real-world control devices—like the
switches and levers on a machine, the check lists and blank lines on a form to fill out, or
the dials and knobs on a home appliance.

Controls turn the messages that report generic mouse and keyboard events into other
messages with more specific instructions for the application. Just as a switch that you
might buy in a hardware store can be hooked up to do various kinds of work, a BControl
object can be customized by setting the message it posts when invoked and the target
receiver that should handle the message.

The Interface Kit currently includes three classes derived from BControl—BButton,
BRadioButton, and BCheckBox. In addition, it has two classes—BListView and
BMenuItem—that implement control devices but are not derived from this class.
BListView shares an interface with the BList class (of the Support Kit) and BMenuItem
is designed to work with the other classes in the menu system.

As BListView and BMenuItem demonstrate, it’s possible to implement a control device
that’s not a BControl. However, it’s simpler to take advantage of the code that’s already
provided by the BControl class. That way you can keep a simple programming interface
and avoid reimplementing functions that BControl has defined for you. If your
application defines its own control devices—dials, sliders, selection lists, text fields, and
the like—they should be derived from BControl.

Hook Functions

SetEnabled() Enables and disables the control device; can be
augmented by derived classes to note when the state of
the object has changed.

SetValue() Changes the value of the control device; can be
augmented to take collateral action when the change is
made.

Constructor and Destructor

86 – The Interface Kit DR3

Constructor and Destructor

BControl()

BControl(BRect frame, const char *name, const char *label,
BMessage *message, ulong resizingMode, ulong flags)

Initializes the BControl by setting its initial value to 0, assigning it a label, which can be
NULL, and registering a model message that captures what the control does—the
command it gives when it’s invoked and the information that accompanies the
command.

The label is copied, but the message is not. The BMessage object becomes the property
of the BControl; it should not be deleted, posted, assigned to another object, or
otherwise used in application code. The label and message can be altered after
construction with the SetLabel() and SetMessage() functions.

The BControl class doesn’t define Draw(), MouseDown(), or KeyDown() functions. It’s
up to derived classes to determine how the label is drawn and how the message is to be
used. Typically, when a BControl object needs to take action (in response to a click, for
example), it calls the Invoke() function, which copies the model message and posts the
copy so that it will be received by the designated target. By default, the target is the
window where the control is located, but SetTarget() can designate another receiver.

Before posting a copy of the model message, Invoke() adds two data entries to it, under
the names “when” and “source”. These names should not be used for data items in the
model.

The frame, name, resizingMode, and flags arguments are identical to those declared for
the BView class and are passed unchanged to the BView constructor.

See also: the BView constructor, PostMessage() in the BLooper class of the
Application Kit, SetLabel(), SetMessage(), SetTarget(), Invoke()

~BControl()

virtual ~BControl(void)

Frees the model message and all memory allocated by the BControl.

Member Functions

DR3 The Interface Kit – 87

Member Functions

AttachedToWindow()

virtual void AttachedToWindow(void)

Overrides BView’s version of this function to set the default font for all control devices
to 9-point “chicago”. It also makes the BWindow to which the BControl has become
attached the default target for the Invoke() function, provided that another target hasn’t
already been set. To make the font change, it calls BView’s SetFontName(); to
designate the target, it calls SetTarget(). Both are virtual functions.

AttachedToWindow() is called for you when the BControl becomes a child of a view
already associated with the window.

See also: AttachedToWindow() and SetFontName() in the BView class, Invoke(),
SetTarget()

Command() see SetMessage()

Invoke()

protected:
void Invoke(void)

Copies the BControl’s model BMessage and posts the copy so that it will be dispatched
to the designated target. The following two pieces of information are added to the copy
before it’s posted:

Data name Type code Description

“when” LONG_TYPE When the control was invoked, as
measured in milliseconds from the time
the machine was last booted.

“source” OBJECT_TYPE A pointer to the BControl object. This
permits the message receiver to request
more information from the source of the
message.

These two names shouldn’t be used for data entries in the model.

If the control doesn’t have a designated target, but it does have a designated BLooper
where it can post the message, it will ask the BLooper for its preferred receiver and
name it as the target. Since the preferred receiver for a BWindow object is the current
focus view, this option allows control devices to be targeted to whatever view happens to
be in focus at the time. See the SetTarget() function for information on how to designate
a target BReceiver and BLooper for the control.

Member Functions

88 – The Interface Kit DR3

Invoke() is designed to be called from the MouseDown() and KeyDown() functions
defined for derived classes; it’s not called for you in BControl code. It’s up to each
derived class to define what user actions trigger the call to Invoke()—what activity
constitutes “invoking” the control.

This function doesn’t check to make sure the BControl is currently enabled. Derived
classes should make that determination before calling Invoke().

See also: SetTarget(), SetMessage(), SetEnabled()

IsEnabled() see SetEnabled()

Label() see SetLabel()

SetEnabled(), IsEnabled()

virtual void SetEnabled(bool flag)

bool IsEnabled(void) const

SetEnabled() enables the BControl if flag is TRUE, and disables it if flag is FALSE.
IsEnabled() returns whether or not the object is currently enabled. BControls are
enabled by default.

While disabled, a BControl typically won’t post messages and won’t respond visually to
mouse and keyboard manipulation. To indicate this nonfunctional state, the control
device is displayed on-screen in subdued colors.

However, it’s left to each derived class to carry out this strategy in a way that’s
appropriate for the kind of control it implements. The BControl class merely marks an
object as being enabled or disabled; none of its functions take the enabled state of the
device into account.

Derived classes can augment SetEnabled() (override it) to take action when the control
device becomes enabled or disabled. To be sure that SetEnabled() has been called to
actually make a change, its current state should be checked before calling the inherited
version of the function. For example:

void MyControl::SetEnabled(bool flag)
{
 if (flag == IsEnabled())
 return;
 BControl::SetEnabled(flag);
 /* Code that responds to the change in state goes here. */
}

Note, however, that you don’t have to override SetEnabled() just to update the on-screen
display when the control becomes enabled or disabled. If the BControl is attached to a
window, the Kit’s version of SetEnabled() always calls the Draw() function. Therefore,

Member Functions

DR3 The Interface Kit – 89

the device on-screen will be updated automatically—as long as Draw() has been
implemented to take the enabled state into account.

See also: the BControl constructor

SetLabel(), Label()

virtual void SetLabel(const char *string)

const char *Label(void) const

These functions set and return the label on a control device—the text that’s displayed,
for example, on top of a button or alongside a check box or radio button. The label is a
null-terminated string.

SetLabel() makes a copy of string, replaces the current label with it, frees the old label,
and updates the control on-screen so the new label will be displayed to the user. The
label is first set by the constructor and can be modified thereafter by this function.

Label() returns the current label. The string it returns belongs to the BControl and may
be altered or freed without notice.

See also: the BControl constructor, AttachedToWindow(), SetFontName() in the
BView class

SetMessage(), Message(), Command()

virtual void SetMessage(BMessage *message)

BMessage *Message(void) const

ulong Command(void) const

SetMessage() sets the model BMessage that defines what the BControl does, and frees
the message that was previously set. Message() returns a pointer to the BMessage that’s
the current model, and Command() returns its what data member. The message is first
set by the BControl constructor.

Because Invoke() adds “when” and “source” entries to the messages it posts, these two
names shouldn’t be used for any data entries in the model BMessage.

The model message passed to SetMessage() and returned by Message() belongs to the
BControl object; it can be modified in application code, but it shouldn’t be deleted
(except by passing NULL to SetMessage()), posted, or put to any other use.

See also: the BControl constructor, Invoke(), SetTarget()

Member Functions

90 – The Interface Kit DR3

SetTarget(), Target()

virtual long SetTarget(BReceiver *target, BLooper *looper = NULL)

BReceiver *Target(BLooper **looper = NULL) const

These functions set and return the object that’s targeted to receive the messages the
BControl posts (through its Invoke() function).

SetTarget() sets the target BReceiver, but is successful only if it can also discern a
BLooper object where Invoke() can post messages to that target. Invoke() calls the
BLooper’s PostMessage() function and names the target as the object that should
receive the message:

looper->PostMessage(theMessage, target);

If the target receiver passed to SetTarget() is itself a BLooper object (such as a
BWindow) or if it’s associated with a BLooper object (as BViews are associated with
BWindows), the looper argument can be NULL. SetTarget() can discover the BLooper
from the target (by calling the target’s Looper() function).

However, if the target can’t supply a BLooper object, a specific looper must be named
as an argument. If a looper isn’t named and the target can’t supply one, the function
fails and returns BAD_VALUE to indicate that the target alone is inadequate.

Moreover, SetTarget() also fails if a specific looper is named but the target is associated
with some other BLooper object. In this case, MISMATCHED_VALUES is returned to
indicate that there’s a conflict between the two arguments.

It’s also possible to name a specific looper, but a NULL target. In this case, messages will
be targeted to the looper’s preferred receiver (the object returned by its
PreferredReceiver() function). For a BWindow, the preferred receiver is the current
focus view. Therefore, by passing a NULL target and a BWindow looper to SetTarget(),

myControl->SetTarget(NULL, myControl->Window());

the control device can be targeted to whatever BView happens to be in focus at the time
the control is invoked. This is useful for controls that act on the current selection.
(Note, however, that if the PreferredReceiver() is NULL, the looper itself becomes the
target.)

When successful, SetTarget() returns NO_ERROR.

Target() returns the current target and, if a pointer to a looper is provided, fills in the
BLooper where Invoke() will post messages. By default (established by
AttachedToWindow()), both roles are filled by the BWindow where the control device is
located.

See also: Looper() in the BReceiver and BView classes, PreferredReceiver() in the
BLooper and BWindow classes, Invoke(), AttachedToWindow()

Member Functions

DR3 The Interface Kit – 91

SetValue(), Value()

virtual void SetValue(long value)

long Value(void) const

These functions set and return the value of the BControl object.

SetValue() assigns the object a new value. If the value passed is in fact different from
the BControl’s current value, this function calls the object’s Draw() function so that the
new value will be reflected in what the user sees on-screen; otherwise it does nothing.

Value() returns the current value.

Each class that’s derived from BControl should call SetValue() in its MouseDown() and
KeyDown() functions to change the value of the control device in response to user
actions. The derived classes defined in the Be software kits change values only by
calling this function.

Since SetValue() is a virtual function, you can override it to take note whenever a
control’s value changes. However, if you want your code to act only when the value
actually changes, you must check to be sure the new value doesn’t match the old before
calling the inherited version of the function. For example:

void MyControl::SetValue(long value)
{
 if (value != Value()) {
 BControl::SetValue(value);
 /* MyControl’s additions to SetValue() go here */
 }
}

Remember that the BControl version of SetValue() does nothing unless the new value
differs from the old.

Target() see SetTarget()

Value() see SetValue()

Member Functions

92 – The Interface Kit DR3

Overview

DR3 The Interface Kit – 93

BListView

Derived from: public BView

Declared in: <interface/ListView.h>

Overview

A BListView is a view that displays a list of items the user can select and invoke. This
class is based on the BList class of the Support Kit. Every member function of the BList
class is replicated by BListView, so you can treat a BListView object just like a BList.
BListView simply makes the list visible.

Displaying the List

In both classes, the list keeps track of data pointers. Adding an item to the list adds only
the pointer; the data itself isn’t copied. Neither class imposes a type restriction on the
data (both declare items to be type void *). However, by default, BListView assumes
they’re pointers to strings (type char *). Its functions can display the strings, highlight
them when selected, and so on. As long as only string pointers are placed in the list, a
BListView object can be used as is. However, if the list is to contain another kind of
data, it’s necessary to derive a class from BListView and reimplement some of its hook
functions.

When the contents of the list change, the BListView makes sure the visible list on-
screen is updated. However, it can know that something changed only when a data
pointer changes, since pointers are all that the list records. If any pointed-to data is
altered, but the pointer remains the same, you must force the list to be redrawn (by
calling the InvalidateItem() function or BView’s Invalidate()).

Selecting and Invoking Items

The user can click an item in the list to select it and double-click an item to both select
and invoke it. The user can also select and invoke items from the keyboard. The
navigation keys (such as Down Arrow, Home, and Page Up) select items; Enter invokes
the item that’s currently selected.

The BListView highlights the selected item, but otherwise it doesn’t define what, if
anything, should take place when an item is selected. You can determine that yourself

Hook Functions

94 – The Interface Kit DR3

by registering a “selection message” (a BMessage object) that should be delivered to a
target receiver whenever the user selects an item.

Similarly, the BListView doesn’t define what it means to “invoke” an item. You can
register a separate “invocation message” that’s posted whenever the user double-clicks
an item or presses Enter while an item is selected. For example, if the user double-
clicks an item in a list of file names, a message might be posted telling the BApplication
object to open that file.

A BListView doesn’t have a default selection message or invocation message.
Messages are posted only if registered with the SetSelectionMessage() and
SetInvocationMessage() functions. The registered message is only a model. When an
item is selected or invoked, the BListView makes a copy of the model, adds information
to the copy about itself and the item, then posts the copy. See the function descriptions
for information on the data that automatically gets added to the message.

See also: the BList class in the Support Kit

Hook Functions

DrawItem() Draws the character string that the item points to; can be
reimplemented to draw from another kind of data.

HighlightItem() Highlights the item by inverting all the colors in its frame
rectangle; can be reimplemented to highlight in a
different way.

Invoke() Posts the invocation message, if one has been registered
for the BListView; can be augmented to do whatever else
may be necessary when a item is invoked.

ItemHeight() Returns the height of a single item, assuming that it’s a
character string and is to be drawn in the current font; can
be reimplemented to return the height required to draw a
different kind of item. All items are taken to have the
same height.

Select() Highlights the selected item and posts the selection
message, if one has been registered for the BListView;
can be augmented to take any collateral action that may
be required when the selection changes.

Constructor and Destructor

DR3 The Interface Kit – 95

Constructor and Destructor

BListView()

BListView(BRect frame, const char *name,
ulong resizingMode = FOLLOW_LEFT_TOP,
ulong flags = WILL_DRAW | FRAME_EVENTS)

Initializes the new BListView. The frame, name, resizingMode, and flags arguments are
identical to those declared for the BView class and are passed unchanged to the BView
constructor.

The list begins life empty. Call AddItem() or AddList() (documented for the BList class)
to put items in the list. Call Select() (documented below) to select one of the items so
that it’s highlighted when the list is initially displayed to the user.

See also: the BView constructor, AddItem() in the BList class

~BListView()

virtual ~BListView(void)

Frees the model messages, if any, and all memory allocated to hold the list of items.

Member Functions

The BListView class reimplements all of the member functions of the BList class in the
Support Kit. BListView’s versions of these functions work identically to the BList
versions, except that a BListView makes sure that the on-screen display is properly
updated whenever the list changes.

Consequently, this section excludes all functions that BList and BListView have in
common. It concentrates instead on those member functions that deal with the
BListView’s behavior as a view, not as a list. See the BList class for information on the
functions that you can use to manipulate the BListView’s list.

AttachedToWindow()

virtual void AttachedToWindow(void)

Sets up the BListView so that it’s prepared to draw character strings for items, and
makes the BWindow to which the object has become attached the target for messages
posted by the Select() and Invoke() functions—provided another target hasn’t already
been set.

Member Functions

96 – The Interface Kit DR3

This function is called for you when the BListView becomes part of a window’s view
hierarchy.

See also: AttachedToWindow() in the BView class, SetTarget()

BaselineOffset()

protected:
float BaselineOffset(void)

Returns the distance from the bottom of an item’s frame rectangle to the baseline where
the item, assuming it is a character string, is drawn. The string is drawn beginning at a
point that’s offset 2.0 coordinate units from the left of the frame rectangle and
BaselineOffset() units from the bottom. The offsets are the same for all items.

This function will give unreliable results unless the BListView is attached to a window.

CurrentSelection()

inline long CurrentSelection(void) const

Returns the index of the currently selected item, or a negative number if no item is
selected.

See also: Select()

Draw()

virtual void Draw(BRect updateRect)

Calls the DrawItem() hook function to draw each visible item in the updateRect area of
the view and highlights the currently selected item by calling the HighlightItem() hook
function.

Draw() is called for you whenever the list view is to be updated or redisplayed; you
don’t need to call it yourself. You also don’t need to reimplement it, even if you’re
defining a list that displays something other than character strings. You should
implement data-specific versions of DrawItem() and HighlightItem() instead.

See also: Draw() in the BView class, DrawItem(), HighlightItem()

Member Functions

DR3 The Interface Kit – 97

DrawItem()

protected:
virtual void DrawItem(BRect updateRect, long index)

Draws the item at index. The default version of this function assumes that the item is a
character string. It can be reimplemented by derived classes to draw differently, based
on other kinds of data.

The updateRect rectangle is stated in the BListView’s coordinate system. It’s the
portion of the item’s frame rectangle that needs to be updated. The full frame rectangle
of the item is returned by the ItemFrame() function.

The Draw() function determines which items in the BListView need to be updated and
calls DrawItem() for each one.

See also: ItemHeight(), ItemFrame(), HighlightItem(), BaselineOffset()

FrameResized()

virtual void FrameResized(float width, float height)

Updates the on-screen display in response to a notification that the BListView’s frame
rectangle has been resized. In particular, this function looks for a vertical scroll bar
that’s a sibling of the BListView. It adjusts this scroll bar to reflect the way the list view
was resized, under the assumption that it must have the BListView as its target.

FrameResized() is called automatically at the appropriate times; you shouldn’t call it
yourself.

See also: FrameResized() in the BView class

HighlightItem()

protected:
virtual void HighlightItem(bool flag, long index)

Highlights the item at index if flag is TRUE, and removes the highlighting if flag is FALSE.
Items are highlighted by inverting all colors in their frame rectangles.

This function is called (by Draw()) to highlight the selected item and (by Select()) to
change the item that’s highlighted whenever the selection changes. It can be
reimplemented in a derived class to highlight in a different way.

See also: Select(), Draw()

Member Functions

98 – The Interface Kit DR3

InvalidateItem()

void InvalidateItem(long index)

Invalidates the item at index so that an update message will be sent forcing the
BListView to redraw it.

See also: Invalidate() in the BView class

Invoke()

virtual void Invoke(long index)

Invokes the item at index, provided that the index isn’t out-of-range.

This function is called whenever the user double-clicks an item in the list, or presses the
Enter key while the BListView is the current focus view for the window and there’s a
selected item. It can also be called from application code to invoke a particular item;
usually Select() would first be called to select the item.

To invoke an item that’s identified by a pointer, first call IndexOf() to find where it’s
located in the list:

long i = myList->IndexOf(someItem);
myList->Select(i);
myList->Invoke(i);

If a model “invocation message” has been registered with the BListView (through
SetInvocationMessage()), Invoke() makes a copy of the message, adds information to
the copy identifying the BListView and the invoked item, and posts the copy so that it
will be received by the designated target. The default target (established by
AttachedToWindow()) is the BWindow where the BListView is located. If SetTarget()
was called to name a particular BLooper where the message should be posted, but to set
a NULL target, the target will be the BLooper’s preferred receiver.

What it means to “invoke” an item depends entirely on the BMessage that’s posted and
the receiver’s response when it gets the message. This function does nothing but post
the message.

See also: Select(), SetInvocationMessage(), SetTarget()

IsItemSelected()

inline bool IsItemSelected(long index) const

Returns TRUE if the item at index is currently selected, and FALSE if it’s not.

See also: CurrentSelection()

Member Functions

DR3 The Interface Kit – 99

ItemFrame()

protected:
BRect ItemFrame(long index) const

Returns the frame rectangle of the item at index. The rectangle defines the area where
the item is drawn; it’s stated in the coordinate system of the BListView. The rectangle is
calculated from the ordinal position of the item in the list and the value returned by
ItemHeight().

It’s expected that you’d need to find an item’s frame rectangle only if you’re
implementing a DrawItem() function.

< This function currently doesn’t check to be sure that the index is in range. >

See also: DrawItem()

ItemHeight()

protected:
virtual float ItemHeight(void) const

Returns how much vertical room is required to draw a single item in the list—how high
each item’s frame rectangle should be. The BListView calls ItemHeight() extensively to
determine where items are located and where to draw them. By default, it returns a
height sufficient to draw a character string in the current font.

A derived class that draws items other than character strings should reimplement
ItemHeight() so that it returns the height required to draw one of its items.

See also: DrawItem()

KeyDown()

virtual void KeyDown(ulong aChar)

Permits the user to operate the list using the following keys:

Keys Perform Action

Up Arrow and Down Arrow Select the items that are immediately before and
immediately after the currently selected item.

Page Up and Page Down Select the items that are one viewful above and
below the currently selected item—or the first and
last items if there’s no item a viewful away.

Home and End Select the first and last items in the list.

Enter Invokes the currently selected item.

Member Functions

100 – The Interface Kit DR3

This function is called to notify the BListView of key-down events whenever it’s the
focus view in the active window; you shouldn’t call it yourself.

See also: KeyDown() in the BView class, Select(), Invoke()

MouseDown()

virtual void MouseDown(BPoint point)

Determines which item is located at point and calls Select() to select it (for a single-
click or the first event in a series) and Invoke() to invoke it (for a double-click or the
second in a series).

This function also makes the BListView the focus view so the user can operate the list
from the keyboard.

MouseDown() is called to notify the BListView of a mouse-down event; you don’t need
to call it yourself.

See also: MouseDown() in the BView class, Select(), Invoke()

Select()

virtual void Select(long index)

Selects the item located at index, provided that the index isn’t out-of-range. This
function removes the highlighting from the previously selected item and highlights the
new selection, scrolling the list so the item is visible if necessary. Selecting an item also
marks it as the item that CurrentSelection() returns and that the Enter key can invoke.

Select() is called whenever the user selects an item, using either the keyboard or the
mouse. It can also be called from application code to set an initial selection in the list or
change the current selection.

If a model “selection message” has been registered with the BListView, Select() copies
the message, adds information to the copy identifying the list and the item that was
selected, and posts the copy so that it will be dispatched to the target BReceiver. If a
message hasn’t been registered, “selecting” an item simply means to highlight it and
mark is as the selected item.

Typically, BListViews are set up to post a message when an item is invoked, but not
when one is selected.

See also: SetSelectionMessage(), Invoke()

Member Functions

DR3 The Interface Kit – 101

SetFontName(), SetFontSize(), SetFontRotation(), SetFontShear(),
SetFontSymbolSet()

virtual void SetFontName(const char *name)

virtual void SetFontSize(float points)

virtual void SetFontRotation(float degrees)

virtual void SetFontShear(float angle)

virtual void SetFontSymbolSet(const char *name)

These functions augment their BView counterparts to update the BListView so that all
visible items are redisplayed on-screen in the new font. However, SetFontRotation() is
disabled; a rotated font is incompatible with a list horizontal items.

See also: SetFontName() in the BView class

SetInvocationMessage(), InvocationMessage(),
InvocationCommand()

virtual void SetInvocationMessage(BMessage *message)

BMessage *InvocationMessage(void) const

ulong InvocationCommand(void) const

These functions set, and return information about, the BMessage that the BListView
posts when an item is invoked.

SetInvocationMessage() assigns message to the BListView, freeing any message
previously assigned. The message becomes the responsibility of the BListView object
and will be freed only when it’s replaced by another message or the BListView is freed;
you shouldn’t free it yourself. Passing a NULL pointer to this function deletes the current
message without replacing it.

The BListView treats the BMessage as its “invocation message,” a model for the
message it posts when an item in the list is invoked. The Invoke() function makes a
copy of the model and adds two pieces of relevant information. It then posts the copy,
not the original.

The added information identifies the BListView and the invoked item:

Data name Type code Description

“source” OBJECT_TYPE A pointer to the BListView object.

“index” LONG_TYPE The index of the item that was invoked.

These names should not be used for any data that you add to the model message.

Member Functions

102 – The Interface Kit DR3

Given this information, the message receiver can get a pointer to item data. For
example:

void myWindow::MessageReceived(BMessage *message)
{
 BListView *theList;
 long theIndex;
 char *theItem;
 . . .
 theList = (BListView *)message->FindObject("source");
 if (message->Error() == NO_ERROR) {
 theIndex = message->FindLong("index");
 if (message->Error() == NO_ERROR) {
 theItem = (char *)theList->ItemAt(theIndex);
 . . .
 }
 }
 . . .
 }

(Although not shown in this example, you might also want to use the cast_as() macro to
make sure that it’s safe to cast the “source” object pointer to the BListView class.)

InvocationMessage() returns a pointer to the model BMessage and
InvocationCommand() returns its what data member. The message belongs to the
BListView; it can be altered by adding or removing data, but it shouldn’t be deleted.
Nor should it be posted or sent anywhere, since that would eventually free it. To get rid
of the current message, pass a NULL pointer to SetInvocationMessage().

See also: Invoke(), the BMessage class

SetSelectionMessage(), SelectionMessage(), SelectionCommand()

virtual void SetSelectionMessage(BMessage *message)

BMessage *SelectionMessage(void) const

ulong SelectionCommand(void) const

These functions set, and return information about, the message that a BListView posts
whenever one of its items is selected. They’re exact counterparts to the invocation
message functions described above under SetInvocationMessage(), except that the
“selection message” is posted whenever an item in the list is selected, rather than when
invoked. It’s more common to take action (to post a message) on invoking an item than
on selecting one.

The message that SetSelectionMessage() assigns to the BListView is a model for the
messages that the Select() function posts. Select() copies the model and posts the copy.

Member Functions

DR3 The Interface Kit – 103

It adds the same two pieces of information to the copy as are added to the invocation
message:

Data name Type code Description

“source” OBJECT_TYPE A pointer to the BListView object.

“index” LONG_TYPE The index of the item that was selected.

You should not use these names for data you add to the model message.

See also: Select(), SetInvocationMessage(), the BMessage class

SetTarget(), Target()

virtual long SetTarget(BReceiver *target, BLooper *looper = NULL)

BReceiver *Target(BLooper **looper = NULL) const

SetTarget() sets the target BReceiver that’s expected to handle messages the BListView
posts (though its Select() and Invoke() functions). It’s successful only if it can also
learn about a BLooper object where messages can be posted to the target. To post a
message, the BListView calls the BLooper’s PostMessage() function and names the
target as the object that should receive the message:

looper->PostMessage(theMessage, target);

If the target receiver passed to SetTarget() is itself a BLooper object (such as a
BWindow) or if it’s associated with a BLooper object (as BViews are associated with
BWindows), the looper argument can be NULL. SetTarget() can discover the BLooper
from the target (by calling the target’s Looper() function).

However, if the target can’t supply a BLooper object, a specific looper must be named
as an argument. If a looper isn’t named and can’t be discovered from the target, the
function fails and BAD_VALUE is returned to indicate that the target alone is insufficient.

Moreover, SetTarget() also fails if a specific looper is named but the target is associated
with some other BLooper object. In this case, MISMATCHED_VALUES is returned to
indicate that there’s a conflict between the two arguments.

It’s also possible to specify a NULL target. In this case, the message will be targeted to
the looper’s preferred receiver (the object returned by its PreferredReceiver() function).
For a BWindow, the preferred receiver is the current focus view. Therefore, by passing a
NULL target and a BWindow looper to SetTarget(),

myList->SetTarget(NULL, myList->Window());

the BListView can be targeted to whatever BView happens to be in focus at the time an
item is invoked.

Member Functions

104 – The Interface Kit DR3

Note, however, that if the looper doesn’t have a preferred receiver (as a BLooper doesn’t
by default, and a BWindow won’t if none of its views are currently in focus), the
message will be targeted to the looper itself.

If both target and looper are NULL, the function fails and BAD_VALUE is returned. When
successful, SetTarget() returns NO_ERROR.

Target() returns the current target and, if a pointer to a looper is provided, fills in the
BLooper where Invoke() will post messages. By default (established by
AttachedToWindow()), both roles are filled by the BWindow where the list is displayed.
If the BListView isn’t attached to a window and a target hasn’t been set, Target() returns
NULL.

See also: Looper() in the BReceiver and BView classes, PreferredReceiver() in the
BLooper and BWindow classes, Invoke(), AttachedToWindow()

Overview

DR3 The Interface Kit – 105

BMenu

Derived from: public BView

Declared in: <interface/Menu.h>

Overview

A BMenu object displays a pull-down or pop-up list of menu items. Menus organize the
features of an application—the common ones as well as the more obscure—and provide
users with points of entry for most everything the application can do.

Menus categorize the features of the application—all formatting possibilities might be
grouped in one menu, a list of documents in another, graphics choices in a third, and so
on. The arrangement of menus presents an outline of how the various parts of the
application fit together.

Menu Hierarchy

Menus are hierarchically arranged; an item in one menu can control another menu. The
controlled menu is a submenu; the menu that contains the item that controls it is its
supermenu. A submenu remains hidden until the user operates the item that controls it;
it becomes hidden again when the user is finished with it. A submenu can have its own
submenus, and those submenus can have submenus of their own, and so on—although it
becomes hard for users to find their way around in a menu hierarchy that becomes too
deep.

The menu at the root of the hierarchy is displayed in a window as a list—perhaps a list
of just one item. Since it, unlike other menus, doesn’t have a controlling item, it must
remain visible. A root menu is therefore a special kind of menu in that it behaves more
like an ordinary view than do other menus, which stay hidden. Root menus should
belong to the BMenuBar class, which is derived from BMenu. The typical root menu is
a menu bar displayed across the top of a window (hence the name of the class).

Menu Items

Each item in a menu is a kind of BMenuItem object. An item can be marked (displayed
with a check mark to its left), assigned a keyboard shortcut, enabled and disabled, and
given a “trigger” character that the user can type to invoke the item when its menu is
open on-screen.

Hook Functions

106 – The Interface Kit DR3

Every item has a particular job to do. If an item controls a submenu, its job is to show
the submenu on-screen and hide it again. All other items give instructions to the
application. When invoked by the user, they post a BMessage object to a target
BReceiver. What the item does depends on the content of the BMessage and the
BReceiver’s response to it.

The BMenu and BMenuItem classes share some functions that accomplish the same
thing when called for a submenu or for the supermenu item that controls the submenu.
For example, setting the target for a BMenu (SetTarget()) sets the target for each of its
items. Disabling a submenu (SetEnabled()) is the same as disabling the item that
controls it; the user will be able to bring the submenu to the screen, but none of its items
will work. This, in effect, disables all items and menus in the branch of the menu
hierarchy under the superitem.

Hook Functions

ScreenLocation() Can be implemented to have the menu appear on-screen
at some location other than the default.

Constructor and Destructor

BMenu()

public:
BMenu(const char *name, menu_layout layout = ITEMS_IN_COLUMN)

BMenu(const char *name, float width, float height)

protected:
BMenu(BRect frame, const char *name, ulong resizingMode, ulong flags,

menu_layout layout, bool resizeToFit)

Initializes the BMenu object. The name of the object becomes the initial label of the
supermenu item that controls the menu and brings it to the screen. (It’s also the view
name that can be passed to BView’s FindView() function.)

A new BMenu object doesn’t contain any items; you need to call AddItem() to set up its
contents.

Constructor and Destructor

DR3 The Interface Kit – 107

A menu can arrange its items in any of three ways:

ITEMS_IN_COLUMN The items are stacked vertically in a column, one
on top of the other, as in a typical menu.

ITEMS_IN_ROW The items are laid out horizontally in a row, from
end to end, as in a typical menu bar.

ITEMS_IN_MATRIX The items are arranged in a custom fashion, such as
a matrix.

Either ITEMS_IN_ROW or the default ITEMS_IN_COLUMN can be passed as the layout
argument to the public constructor. (A column is the default for ordinary menus; a row
is the default for BMenuBars.) This version of the constructor isn’t designed for
ITEMS_IN_MATRIX layouts.

A BMenu object can arrange items that are laid out in a column or a row entirely on its
own. The menu will be resized to exactly fit the items that are added to it.

However, when items are laid out in a custom matrix, the menu needs more help. First,
the constructor must be informed of the exact width and height of the menu rectangle.
The version of the constructor that takes these two parameters is designed just for matrix
menus—it sets the layout to ITEMS_IN_MATRIX. Then, when items are added to the
menu, the BMenu object expects to be informed of their precise positions within the
specified area. The menu is not resized to fit the items that are added. Finally, when
items in the matrix change, you must take care of any required adjustments in the layout
yourself.

The protected version of the constructor is supplied for derived classes that don’t simply
devise different sorts of menu items or arrange them in a different way, but invent a
different kind of menu. If the resizeToFit flag is TRUE, it’s expected that the layout will
be ITEMS_IN_COLUMN or ITEMS_IN_ROW. The menu will resize itself to fit the items that
are added to it. If the layout is ITEMS_IN_MATRIX, the resizeToFit flag should be FALSE.

~BMenu()

virtual ~BMenu(void)

Deletes all the items that were added to the menu and frees all memory allocated by the
BMenu object. Deleting the items serves also to delete any submenus those items
control and, thus, the whole branch of the menu hierarchy.

Member Functions

108 – The Interface Kit DR3

Member Functions

AddItem()

bool AddItem(BMenuItem *item)

bool AddItem(BMenuItem *item, long index)

bool AddItem(BMenuItem *item, BRect frame)

bool AddItem(BMenu *submenu)

bool AddItem(BMenu *submenu, long index)

bool AddItem(BMenu *submenu, BRect frame)

Adds an item to the menu list at index—or, if no index is mentioned, to the end of the
list. If items are arranged in a matrix rather than a list, it’s necessary to specify the
item’s frame rectangle—the exact position where it should be located in the menu view.
Assume a coordinate system for the menu that has the origin, (0.0, 0.0), at the left top
corner of the view rectangle. The rectangle will have the width and height that were
specified when the menu was constructed.

The versions of this function that take an index (even an implicit one) can be used only
if the menu arranges items in a column or row (ITEMS_IN_COLUMN or ITEMS_IN_ROW);
it’s an error to use them for items arranged in a matrix. Conversely, the versions of this
function that take a frame rectangle can be used only if the menu arranges items in a
matrix (ITEMS_IN_MATRIX); it’s an error to use them for items arranged in a list.

If a submenu is specified rather than an item, AddItem() constructs a controlling
BMenuItem for the submenu and adds the item to the menu.

If it’s unable to add the item to the menu—for example, if the index is out-of-range or
the wrong version of the function has been called—AddItem() returns FALSE. If
successful, it returns TRUE.

See also: the BMenu constructor, the BMenuItem class, RemoveItem()

AddSeparatorItem()

bool AddSeparatorItem(void)

Creates an instance of the BSeparatorItem class and adds it to the end of the menu list,
returning TRUE if successful and FALSE if not (a very unlikely possibility). This function
is a shorthand for:

BSeparatorItem *separator = new BSeparatorItem;
AddItem(separator);

A separator serves only to separate other items in the list. It counts as an item and has
an indexed position in the list, but it doesn’t do anything. It’s drawn as a horizontal line

Member Functions

DR3 The Interface Kit – 109

across the menu. Therefore, it’s appropriately added only to menus where the items are
laid out in a column.

See also: AddItem(), the BSeparatorItem class

AreTriggersEnabled() see SetTriggersEnabled()

AttachedToWindow()

virtual void AttachedToWindow(void)

Finishes initializing the BMenu object by setting graphics parameters and laying out
items. This function is called for you each time the BMenu is assigned to a window.
For a submenu, that means each time the menu is shown on-screen.

See also: AttachedToWindow() in the BView class

CountItems()

long CountItems(void) const

Returns the total number of items in the menu, including separator items.

Draw()

virtual void Draw(BRect updateRect)

Draws the menu. This function is called for you whenever the menu is placed on-screen
or is updated while on-screen. It’s not a function you need to call yourself.

See also: Draw() in the BView class

FindItem()

BMenuItem *FindItem(const char *label) const
BMenuItem *FindItem(ulong command) const

Returns the item with the specified label—or the one that posts a message with the
specified command. If there’s more than one item in the menu with that particular label
or associated with that particular command, this function returns the first one it finds
(the one with the lowest index). If none of the items in the menu meet the criterion, it
returns NULL.

Member Functions

110 – The Interface Kit DR3

FindMarked()

BMenuItem *FindMarked(void)

Returns the first marked item in the menu list (the one with the lowest index), or NULL if
no item is marked.

See also: SetMarked() in the BMenuItem class, SetRadioMode()

Hide(), Show()

protected:
void Hide(void)

void Show(bool selectFirst = FALSE)

These functions hide the menu (remove the BMenu view from the window it’s in and
remove the window from the screen) and show it (attach the BMenu to a window and
place the window on-screen). If the selectFirst flag passed to Show() is TRUE, the first
item in the menu will be selected when it’s shown.

These functions are not ones that you’d ordinarily call, even when implementing a
derived class. You’d need them only if you’re implementing a nonstandard menu of
some kind and want to control when the menu appears on-screen.

See also: Track()

IndexOf()

long IndexOf(BMenuItem *item) const
long IndexOf(BMenu *submenu) const

Returns the index of the specified menu item—or the item that controls the specified
submenu. Indices record the position of the item in the menu list. They begin at 0 for
the item at the top of a column or at the left of a row and include separator items.

If the menu doesn’t contain the specified item, or the item that controls submenu, the
return value will be SYS_ERROR.

See also: AddItem()

InvalidateLayout()

void InvalidateLayout(void)

Forces the BMenu to recalculate the layout of all menu items and, consequently, its own
size. It can do this only if the items are arranged in a row or a column. If the items are
arranged in a matrix, it’s up to you to keep their layout up-to-date.

Member Functions

DR3 The Interface Kit – 111

All BMenu and BMenuItem functions that change an item in a way that might affect the
overall menu automatically invalidate the menu’s layout so it will be recalculated. For
example, changing the label of an item might cause the menu to become wider (if it
needs more room to accommodate the longer label) or narrower (if it no longer needs as
much room as before).

Therefore, you don’t need to call InvalidateLayout() after using a Kit function to change
a menu or menu item; it’s called for you. You’d call it only when making some other
change to a menu.

See also: the BMenu constructor

IsEnabled() see SetEnabled()

IsLabelFromMarked() see SetLabelFromMarked()

IsRadioMode() see SetRadioMode()

ItemAt(), SubmenuAt()

BMenuItem *ItemAt(long index) const

BMenu *SubmenuAt(long index) const

These functions return the item at index—or the submenu controlled by the item at
index. If there’s no item at the index, they return NULL. SubmenuAt() is a shorthand for:

ItemAt(index)->Submenu()

It returns NULL if the item at index doesn’t control a submenu.

See also: AddItem()

KeyDown()

virtual void KeyDown(ulong aChar)

Handles keyboard navigation through the menu. This function is called as the result of
key-down events. It should not be called from application code.

See also: KeyDown() in the BView class

Member Functions

112 – The Interface Kit DR3

Layout()

protected:
menu_layout Layout(void) const

Returns ITEMS_IN_COLUMN if the items in the menu are stacked in a column from top to
bottom, ITEMS_IN_ROW if they’re stretched out in a row from left to right, or
ITEMS_IN_MATRIX if they’re arranged in some custom fashion. By default BMenu items
are arranged in a column and BMenuBar items in a row.

The layout is established by the constructor.

See also: the BMenu and BMenuBar constructors

RemoveItem()

BMenuItem *RemoveItem(long index)

bool RemoveItem(BMenuItem *item)

bool RemoveItem(BMenu *submenu)

Removes the item at index, or the specified item, or the item that controls the specified
submenu. Removing the item doesn’t free it.

• If passed an index, this function returns a pointer to the item so you can free it. It
returns a NULL pointer if the item couldn’t be removed (for example, if the index is
out-of-range).

• If passed an item, it returns TRUE if the item was in the list and could be removed,
and FALSE if not.

• If passed a submenu, it returns TRUE if the submenu is controlled by an item in the
menu and that item could be removed, and FALSE otherwise.

When an item is removed from a menu, it loses its target; the cached value is set to NULL.
If the item controls a submenu, it remains attached to the submenu even after being
removed.

See also: AddItem()

ScreenLocation()

protected:
virtual BPoint ScreenLocation(void)

Returns the point where the left top corner of the menu should appear when the menu is
shown on-screen. The point is specified in the screen coordinate system.

This function is called each time a hidden menu (a submenu of another menu) is brought
to the screen. It can be overridden in a derived class to change where the menu appears.

Member Functions

DR3 The Interface Kit – 113

For example, the BPopUpMenu class overrides it so that a pop-up menu pops up over
the controlling item.

See also: the BPopUpMenu class

SetEnabled(), IsEnabled()

virtual void SetEnabled(bool flag)

bool IsEnabled(void) const

SetEnabled() enables the BMenu if flag is TRUE, and disables it if flag is FALSE. If the
menu is a submenu, this enables or disables its controlling item, just as if SetEnabled()
were called for that item. The controlling item is updated so that it displays its new
state, if it happens to be visible on-screen.

Disabling a menu disables its entire branch of the menu hierarchy. All items in the
menu, including those that control other menus, are disabled.

IsEnabled() returns TRUE if the BMenu, and every BMenu above it in the menu
hierarchy, is enabled. It returns FALSE if the BMenu, or any BMenu above it in the menu
hierarchy, is disabled.

See also: SetEnabled() in the BMenuItem class

SetLabelFromMarked(), IsLabelFromMarked()

protected:
void SetLabelFromMarked(bool flag)

bool IsLabelFromMarked(void)

SetLabelFromMarked() determines whether the label of the item that controls the menu
(the label of the superitem) should be taken from the currently marked item within the
menu. If flag is TRUE, the menu is placed in radio mode and the superitem’s label is reset
each time the user selects a different item. If flag is FALSE, the setting for radio mode
doesn’t change and the label of the superitem isn’t automatically reset.

IsLabelFromMarked() returns whether the superitem’s label is taken from the marked
item (but not necessarily whether the BMenu is in radio mode).

See also: SetRadioMode()

Member Functions

114 – The Interface Kit DR3

SetRadioMode(), IsRadioMode()

virtual void SetRadioMode(bool flag)

bool IsRadioMode(void)

SetRadioMode() puts the BMenu in radio mode if flag is TRUE and takes it out of radio
mode if flag is FALSE. In radio mode, only one item in the menu can be marked at a time.
If the user selects an item, a check mark is placed in front of it automatically (you don’t
need to call BMenuItem’s SetMarked() function; it’s called for you). If another item
was marked at the time, its mark is removed. Selecting a currently marked item retains
the mark.

IsRadioMode() returns whether the BMenu is currently in radio mode. The default
radio mode is FALSE for ordinary BMenus, but TRUE for BPopUpMenus.

SetRadioMode() doesn’t change any of the items in the menu. If you want an initial
item to be marked when the menu is put into radio mode, you must mark it yourself.

When SetRadioMode() turns radio mode off, it calls SetLabelFromMarked() and passes
it an argument of FALSE—turning off the feature that changes the label of the menu’s
superitem each time the marked item changes. Similarly, when SetLabelFromMarked()
turns on this feature, it calls SetRadioMode() and passes it an argument of TRUE—
turning on radio mode.

See also: SetMarked() in the BMenuItem class, SetLabelFromMarked()

SetTarget()

virtual long SetTarget(BReceiver *target, BLooper *looper = NULL)

This function is a convenience for assigning the same target and looper to all items in
the menu. It works through the list of items in order, calling BMenuItem’s SetTarget()
virtual function for each one. However, if it’s unable to set the target of any item, it
aborts and returns the error it encountered. If successful in setting the target (and
looper) of all items, it returns NO_ERROR. See BMenuItem’s SetTarget() for
information on acceptable target and looper values.

This function doesn’t work recursively; it acts only on items added to the BMenu, not on
items added to submenus of the BMenu.

See also: SetTarget() in the BMenuItem class

Member Functions

DR3 The Interface Kit – 115

SetTriggersEnabled(), AreTriggersEnabled()

virtual void SetTriggersEnabled(bool flag)

bool AreTriggersEnabled(void) const

SetTriggersEnabled() enables the triggers for all items in the menu if flag is TRUE and
disables them if flag is FALSE. AreTriggersEnabled() returns whether the triggers are
currently enabled or disabled. They’re enabled by default.

Triggers are displayed to the user only if they’re enabled, and only when keyboard
actions can operate the menu.

Triggers are appropriate for some menus, but not for others. SetTriggersEnabled() is
typically called to initialize the BMenu when it’s constructed, not to enable and disable
triggers as the application is running. If triggers are ever enabled for a menu, they
should always be enabled; if they’re ever disabled, they should always be disabled.

See also: SetTrigger() in the BMenuItem class

Show() see Hide()

SubmenuAt() see ItemAt()

Superitem(), Supermenu()

BMenuItem *Superitem(void) const

BMenu *Supermenu(void) const

These functions return the supermenu item that controls the BMenu and the supermenu
where that item is located. The supermenu could be a BMenuBar object. If the BMenu
hasn’t been made the submenu of another menu, both functions return NULL.

See also: AddItem()

Track()

protected:
BMenuItem *Track(void)

Initiates tracking of the cursor within the menu. This function passes tracking control to
submenus (and submenus of submenus) depending on where the user moves the mouse.
If the user ends tracking by invoking an item, Track() returns the item. If the user didn’t
invoke any item, it returns NULL. The item doesn’t have to be located in the BMenu; it
could, for example, belong to a submenu of the BMenu.

Member Functions

116 – The Interface Kit DR3

Track() is called by the BMenu to initiate tracking in the menu hierarchy. You would
need to call it yourself only if you’re implementing a different kind of menu that starts to
track the cursor under nonstandard circumstances.

Overview

DR3 The Interface Kit – 117

BMenuBar

Derived from: public BMenu

Declared in: <interface/MenuBar.h>

Overview

A BMenuBar is a menu that can stand at the root of a menu hierarchy. Rather than
appear on-screen when commanded to do so by a user action, a BMenuBar object has a
settled location in a window’s view hierarchy, just like other views. Typically, the root
menu is the menu bar that’s drawn across the top of the window. It’s from this use that
the class gets its name.

However, instances of this class can also be used in other ways. A BMenuBar might
simply display a list of items arranged in a column somewhere in a window. Or it might
contain just one item, where that item controls a pop-up menu (a BPopUpMenu object).
Rather than look like a “menu bar,” the BMenuBar object would look something like a
button.

The “Main” Menu Bar

The “real” menu bar at the top of the window usually represents an extensive menu
hierarchy; each of its items typically controls a submenu.

The user should be able to operate this menu bar from the keyboard (using the arrow
keys and Enter). There are two ways that the user can put the BMenuBar and its
hierarchy in focus for keyboard events:

• Clicking an item in a menu bar. This opens the submenu the item controls so that
it stays visible on-screen and puts the submenu in focus.

• Pressing the Menu key, or pressing and releasing a Command key. This puts the
BMenuBar in focus and selects its first item.

Either method opens the entire menu hierarchy to keyboard navigation.

If there’s only one BMenuBar in the window’s view hierarchy, the Menu key (or
Command) will put it in focus. But if there’s more than one BMenuBar object, the
Menu key must choose one of them. By default, it selects the last one added to the
window. However, the SetMainMenuBar() function defined in the BWindow class can
be called to designate a different BMenuBar object as the “main” menu bar for the
window.

Constructor and Destructor

118 – The Interface Kit DR3

A Kind of BMenu

BMenuBar inherits most of its functions from the BMenu class. It reimplements the
AttachedToWindow(), Draw(), and MouseDown() functions that set up the object and
respond to messages, but these aren’t functions that you’d call from application code;
they’re called for you.

The only real function (other than the constructor) that the BMenuBar class adds to
those it inherits is SetBorder(), which determines how the list of items is bordered.

Therefore, for most BMenuBar operations—adding submenus, finding items,
temporarily disabling the menu bar, and so on—you must call inherited functions and
treat the object like the BMenu that it is.

See also: the BMenu class

Constructor and Destructor

BMenuBar()

BMenuBar(BRect frame, const char *name,
ulong resizingMode = FOLLOW_LEFT_TOP_RIGHT,
menu_layout layout = ITEMS_IN_ROW,
bool resizeToFit = FALSE)

Initializes the BMenuBar by assigning it a frame rectangle, a name, and a resizingMode,
just like other BViews. These values are passed up the inheritance hierarchy to the
BView constructor. The “real” menu bar in a window should have a frame rectangle just
high enough to accommodate a single row of items and a border. Given the default font
currently used for menu items, the frame height should be about 14.0 coordinate units.

The layout of the menu determines how items are arranged. By default, they’re
arranged in a row as befits a true menu bar. If an instance of this class isn’t being used
to implement an actual menu bar, items can be laid out in a column (ITEMS_IN_COLUMN)
or in a matrix (ITEMS_IN_MATRIX).

If the resizeToFit flag is TRUE, the frame rectangle of the BMenuBar will be resized to
exactly fit the items that are added to the object. This usually is not what’s desired. For
a true menu bar, the frame rectangle should stretch all the way across the window, from
the left side to the right, no matter how many items it contains. The default resizing
mode of FOLLOW_LEFT_TOP_RIGHT permits the menu bar to adjust itself to changes in the
window’s width, while keeping it glued to the top of the window.

Change the resizingMode, the layout, and the resizeToFit flag for BMenuBars that are
used for a purpose other than to implement a true menu bar.

See also: the BMenu constructor

Member Functions

DR3 The Interface Kit – 119

~BMenuBar()

virtual ~BMenuBar(void)

Frees all the items and submenus in the entire menu hierarchy, and all memory allocated
by the BMenuBar.

Member Functions

AttachedToWindow()

virtual void AttachedToWindow(void)

Finishes the initialization of the BMenuBar by setting up its graphics environment, and
by making the BWindow to which it has become attached the target receiver for all
items in the menu hierarchy, except for those items for which a target has already been
set.

This function also makes the BMenuBar the “main menu bar,” the BMenuBar object
whose menu hierarchy the user can navigate from the keyboard. If a window contains
more than one BMenuBar in its view hierarchy, the last one that’s added to the window
gets to keep this designation. However, the “main” menu bar should always be the real
menu bar at the top of the window. It can be explicitly set with BWindow’s
SetMainMenuBar() function.

See also: SetMainMenuBar() in the BWindow class

Draw()

virtual void Draw(BRect updateRect)

Draws the menu—whether as a true menu bar, as some other kind of menu list, or as a
single item that controls a pop-up menu. This function is called as the result of update
messages; you don’t need to call it yourself.

See also: Draw() in the BView class

MouseDown()

virtual void MouseDown(BPoint point)

Initiates mouse tracking and keyboard navigation of the menu hierarchy. This function
is called when the BMenuBar is notified of a mouse-down event.

See also: MouseDown() in the BView class

Member Functions

120 – The Interface Kit DR3

SetBorder()

void SetBorder(ulong border)

Determines how the menu list is bordered. The border argument can be:

BORDER_FRAME The border is drawn around the entire frame rectangle.
BORDER_CONTENTS The border is drawn around just the list of items.
BORDER_EACH_ITEM A border is drawn around each item.

The default is BORDER_FRAME.

Overview

DR3 The Interface Kit – 121

BMenuItem

Derived from: public BObject

Declared in: <interface/MenuItem.h>

Overview

A BMenuItem is an object that contains and displays one item within a menu. By
default, Menu items are displayed simply as textual labels, like “Options...” or “Save
As”. Derived classes can be defined to draw something other than a label—or
something in addition to the label.

Kinds of Items

Some menu items play a role in helping users navigate the menu hierarchy. They give
the user access to submenus. A submenu remains hidden until the user operates the item
that controls it.

Other items accomplish specific actions. When the user invokes the item, a message is
posted to a target BReceiver, usually the window where the menu at the root of the
hierarchy (a BMenuBar object) is displayed. The action that the item initiates, or the
state that it sets, depends entirely on the message and the receiver’s response to it.

The target receiver and the message can be customized for every item. Each
BMenuItem retains a model for the BMessage it posts and can have a target that’s
different from other items in the same menu.

Items can also have a visual presence, but do nothing. Instances of the BSeparatorItem
class, which is derived from BMenuItem, serve only to visually separate groups of items
in the menu.

Shortcuts and Triggers

Any menu item (except for those that control submenus) can be associated with a
keyboard shortcut, a character that the user can type in combination with the Command
key (and possibly other modifiers) to invoke the item. The shortcut character is
displayed in the menu item to the right of the label. All shortcuts for menu items require
the user to hold down the Command key.

Overview

122 – The Interface Kit DR3

A shortcut works even when the item it invokes isn’t visible on-screen. It, therefore, has
to be unique within the window (within the entire menu hierarchy).

Every menu item is also associated with a trigger, a character that the user can type
(without the Command key) to invoke the item. The trigger works only while the menu
is both open on-screen and can be operated using the keyboard. It therefore must be
unique only within a particular branch of the menu hierarchy (within the menu).

The trigger is one of the characters that’s displayed within the item—either the keyboard
shortcut or a character in the label. When it’s possible for the trigger to invoke the item,
the character is drawn in a distinctive color. Like shortcuts, triggers are case-insensitive.

For an item to have a keyboard shortcut, the application must explicitly assign one when
constructing the object. However, by default, the Interface Kit chooses and assigns
triggers for all items. The default choice can be altered by the SetTrigger() function.

Marked Items

An item can also be marked (with a check mark drawn to the left of the label) in order to
indicate that the state it sets is currently in effect. Items are marked by the SetMarked()
function. A menu can be set up so that items are automatically marked when they’re
selected and exactly one item is marked at all times. (See SetRadioMode() in the
BMenu class.)

Disabled Items

Items can also be enabled or disabled (by the SetEnabled() function). A disabled item is
drawn in muted tones to indicate that it doesn’t work. It can’t be selected or invoked. If
the item controls a specific action, it won’t post the message that initiates the action. If
it controls a submenu, it will still bring the submenu to the screen, but all the items in
submenu will be disabled. If an item in the submenu brings its own submenu to the
screen, items in that submenu will also be disabled. Disabling the superitem for a
submenu in effect disables a whole branch of the menu hierarchy.

See also: the BMenu class, the BSeparatorItem class

Hook Functions

DR3 The Interface Kit – 123

Hook Functions

All BMenuItem hook functions are protected. They should be implemented only if you
design a special type of menu item that displays something other than a textual label.

Draw() Draws the entire item; can be reimplemented to draw the
item in a different way.

DrawContents() Draws the item label; can be reimplemented to draw
something other than a label.

GetContentSize() Provides the width and height of the item’s content area,
which is based on the length of the label and the current
font; can be reimplemented to provide the size required
to draw something other than a label.

Highlight() Highlights the item when it’s selected; can be
reimplemented to do highlighting in some way other than
the default.

Constructor and Destructor

BMenuItem()

BMenuItem(const char *label, BMessage *message,
char shortcut = NULL, ulong modifiers = NULL)

BMenuItem(BMenu *submenu)

Initializes the BMenu to display label (which can be NULL if the item belongs to a
derived class that’s designed to display something other than text) and assigns it a model
message.

Whenever the user invokes the item, the model message is copied and the copy is posted
to the target receiver. Three pieces of information are added to the copy before it’s
posted:

Data name Type code Description

“when” LONG_TYPE The time the item was invoked, as
measured in milliseconds since the
machine was last booted.

“source” OBJECT_TYPE A pointer to the BMenuItem object.

“index” LONG_TYPE The index of the item, its ordinal position
in the menu. Indices begin at 0.

These names should not be used for any data that you place in the message.

Constructor and Destructor

124 – The Interface Kit DR3

By default, the target of the message is the window associated with the item’s menu
hierarchy—the window where the BMenuBar at the root of the hierarchy is located.
Another target can be designated by calling the SetTarget() function.

The constructor can also optionally set a keyboard shortcut for the item. The character
that’s passed as the shortcut parameter will be displayed to the right of the item’s label.
It’s the accepted practice to display uppercase shortcut characters only, even though the
actual character the user types may not be uppercase.

The modifiers mask, not the shortcut character, determines which modifier keys the user
must hold down for the shortcut to work—including whether the Shift key must be
down. The mask can be formed by combining any of the modifiers constants, especially
these:

SHIFT_KEY
CONTROL_KEY
OPTION_KEY
COMMAND_KEY

However, COMMAND_KEY is required for all keyboard shortcuts; it doesn’t have to be
explicitly included in the mask. For example, setting the shortcut to ‘U’ with no
modifiers would mean that the letter ‘U’ would be displayed alongside the item label
and Command-u would invoke the item. The same shortcut with a SHIFT_KEY modifiers
mask would mean that the uppercase character (Command-Shift-U) would invoke the
item.

If the BMenuItem is constructed to control a submenu, it doesn’t post messages—its
role is to bring up the submenu—and it can’t take a shortcut. The item’s initial label will
be taken from the name of the submenu. It can be changed after construction by calling
SetLabel().

See also: SetTarget(), SetMessage(), SetLabel()

~BMenuItem()

virtual ~BMenuItem(void)

Frees the item’s label and its model BMessage object. If the item controls a submenu,
that menu and all its items are also freed. Deleting a BMenuItem destroys the entire
menu hierarchy under that item.

Member Functions

DR3 The Interface Kit – 125

Member Functions

Command() see SetMessage()

ContentLocation()

protected:
BPoint ContentLocation(void) const

Returns the left top corner of the content area of the item, in the coordinate system of the
BMenu to which it belongs. The content area of an item is the area where it displays its
label (or whatever graphic substitutes for the label). It doesn’t include the part of the
item where a check mark or a keyboard shortcut could be displayed, nor the border and
background around the content area.

You would need to call this function only if you’re implementing a DrawContent()
function to draw the contents of the menu item (likely something other than a label).
The content rectangle can be calculated from the point returned by this function and the
size specified by GetContentSize().

If the item isn’t part of a menu, the return value is indeterminate.

See also: GetContentSize(), DrawContent()

Draw(), DrawContent()

protected:
virtual void Draw(void)

virtual void DrawContent(void)

These functions draw the menu item and highlight it if it’s currently selected. They’re
called by the Draw() function of the BMenu where the item is located whenever the
menu is required to display itself; they don’t need to be called from within application
code.

However, they can both be overridden by derived classes that display something other
than a textual label. The Draw() function is called first. It draws the background for the
entire item, then calls DrawContent() to draw the label within the item’s content area.
After DrawContent() returns, it draws the check mark (if the item is currently marked)
and the keyboard shortcut (if any). It finishes by calling Highlight() if the item is
currently selected.

Member Functions

126 – The Interface Kit DR3

Both functions draw by calling functions of the BMenu in which the item is located.
For example:

void MyItem::DrawContent()
{
 . . .
 Menu()->DrawBitmap(image);
 . . .
}

A derived class can override either Draw(), if it needs to draw the entire item, or
DrawContent(), if it needs to draw only within the content area. A Draw() function can
find the frame rectangle it should draw within by calling the BMenuItem’s Frame()
function; a DrawContent() function can calculate the content area from the point
returned by ContentLocation() and the dimensions provided by GetContentSize().

When DrawContent() is called, the pen is positioned to draw the item’s label and the
front color is appropriately set. The front color may be a shade of gray, if the item is
disabled, or black if it’s enabled. If some other distinction is used to distinguish
disabled from enabled items, DrawContent() should check the item’s current state by
calling IsEnabled().

Note: If a derived class implements its own DrawContent() function, but still want to
draw a textual string, it should do so by assigning the string as BMenuItem’s label and
calling the inherited version of DrawContent(), not by calling DrawString(). This
preserves the BMenuItem’s ability to display a trigger character in the string.

See also: Highlight(), Frame(), ContentLocation(), GetContentSize()

Frame()

BRect Frame(void) const

Returns the rectangle that frames the entire menu item, in the coordinate system of the
BMenu to which the item belongs. If the item hasn’t been added to a menu, the return
value is indeterminate.

See also: AddItem() in the BMenu class

GetContentSize()

protected:
virtual void GetContentSize(float *width, float *height)

Writes the size of the item’s content area into the variables referred to by width and
height. The content area of an item is the area where its label (or whatever substitutes
for the label) is drawn.

Member Functions

DR3 The Interface Kit – 127

A BMenu calls GetContentSize() for each of its items as it arranges them in a column or
a row; the function is not called for items in a matrix. The information it provides helps
determine where each item is located and the overall size of the menu.

GetContentSize() must report a size that’s large enough to display the content of the
item (and separate one item from another). By default, it reports an area just large
enough to display the item’s label. This area is calculated from the label and the
BMenu’s current font.

If you design a class derived from BMenuItem and implement your own Draw() or
DrawContent() function, you should also implement a GetContentSize() function to
report how much room will be needed to draw the item’s contents.

See also: DrawContent(), ContentLocation()

Highlight()

protected:
virtual void Highlight(bool flag)

Highlights the menu item when flag is TRUE, and removes the highlighting when flag is
FALSE. Highlighting simply inverts all the colors in the item’s frame rectangle (except
for the check mark).

This function is called by the Draw() function whenever the item is selected and needs to
be drawn in its highlighted state. There’s no reason to call it yourself, unless you define
your own version of Draw(). However, it can be reimplemented in a derived class, if
items belonging to that class need to be highlighted in some way other than simple
inversion.

See also: Draw()

IsEnabled() see SetEnabled()

isMarked() see SetMarked()

IsSelected()

protected:
bool IsSelected(void) const

Returns TRUE if the menu item is currently selected, and FALSE if not. Selected items are
highlighted.

Label() see SetLabel()

Member Functions

128 – The Interface Kit DR3

Menu()

BMenu *Menu(void) const

Returns the menu where the item is located, or NULL if the item hasn’t yet been added to
a menu.

See also: AddItem() in the BMenu class

Message() see SetMessage()

SetEnabled(), IsEnabled()

virtual void SetEnabled(bool flag)

bool IsEnabled(void) const

SetEnabled() enables the BMenuItem if flag is TRUE, disables it if flag is FALSE, and
updates the item if it’s visible on-screen. If the item controls a submenu, this function
calls the submenu’s SetEnabled() virtual function, passing it the same flag. This ensures
that the submenu is enabled or disabled as well.

IsEnabled() returns TRUE if the BMenuItem is enabled, its menu is enabled, and all
menus above it in the hierarchy are enabled. It returns FALSE if the item is disabled or
any objects above it in the menu hierarchy are disabled.

Items and menus are enabled by default.

When using these functions, keep in mind that:

• Disabling a BMenuItem that controls a submenu serves to disable the entire menu
hierarchy under the item.

• Passing an argument of TRUE to SetEnabled() is not sufficient to enable the item if
it’s located in a disabled branch of the menu hierarchy. It can only undo a
previous SetEnabled() call (with an argument of FALSE) on the same item.

See also: SetEnabled() in the BMenu class

SetLabel(), Label()

virtual void SetLabel(const char *string)

const char *Label(void) const

SetLabel() frees the item’s current label and copies string to replace it. If the menu is
visible on-screen, it will be redisplayed with the item’s new label. If necessary, the
menu will become wider (or narrower) so that it fits the new label.

Member Functions

DR3 The Interface Kit – 129

The Interface Kit calls this virtual function to:

• Set the initial label of an item that controls a submenu to the name of the
submenu, and

• Subsequently set the item’s label to match the marked item in the submenu, if the
submenu was set up to have this feature.

Label() returns a pointer to the current label.

See also: SetLabelFromMarked() in the BMenu class, the BMenuItem constructor

SetMarked(), IsMarked()

virtual void SetMarked(bool flag)

bool IsMarked(void) const

SetMarked() adds a check mark to the left of the item label if flag is TRUE, or removes an
existing mark if flag is FALSE. If the menu is visible on-screen. it’s redisplayed with or
without the mark.

IsMarked() returns whether the item is currently marked.

See also: SetLabelFromMarked() and FindMarked() in the BMenu class

SetMessage(), Message(), Command()

virtual void SetMessage(BMessage *message)

BMessage *Message(void) const

ulong Command(void) const

SetMessage() makes message the model BMessage for the menu item, deleting any
previous message assigned to the item. The model message is first set by the
BMenuItem constructor; SetMessage() allows you to change the message in midstream.
You might need to change it, for example, when the item’s label changes.

When a menu item is invoked, its model message is copied, relevant information is
added to the copy, and the copy is posted to the target BReceiver. (The information that
gets added to the copy is described under the BMenuItem constructor.)

Message() returns a pointer to the BMenuItem’s model message and Command()
returns its what data member. If the BMenuItem doesn’t post a message—if, for
example, it controls a submenu or is a separator item—both functions return NULL.

The BMessage that Message() returns belongs to the BMenuItem. You can modify it by
adding and removing data, but you shouldn’t delete it or do anything that will cause it to
be deleted. In particular, you shouldn’t post or send the message anywhere, since that

Member Functions

130 – The Interface Kit DR3

would transfer ownership to a message loop and subject the message to automatic
deletion.

It’s possible to set and return a model BMessage for a separator item or an item that
controls a submenu. However, the message will never be used.

See also: the BMenuItem constructor, SetTarget()

SetTarget(), Target()

virtual long SetTarget(BReceiver *target, BLooper *looper = NULL)

BReceiver *Target(BLooper **looper = NULL) const

These functions set and return the object that’s targeted to receive messages posted by
the BMenuItem.

SetTarget() sets the target BReceiver, but is successful only if it can also discern a
BLooper object where the BMenuItem can post messages to that target. The
BMenuItem calls the BLooper’s PostMessage() function and names the target as the
object that should receive the message:

looper->PostMessage(theMessage, target);

If the target receiver passed to SetTarget() is itself a BLooper object (such as a
BWindow) or if it’s associated with a BLooper object (as BViews are associated with
BWindows), the looper argument can be NULL. SetTarget() can discover the BLooper
from the target (by calling the target’s Looper() function).

However, if the target can’t supply a BLooper object, a specific looper must be named
as an argument. If a looper isn’t named and the target can’t supply one, the function
fails and returns BAD_VALUE to indicate that the target alone is insufficient.

Moreover, it also fails if a specific looper is named but the target is associated with
some other BLooper object. MISMATCHED_VALUES is returned to indicate that there’s a
conflict between the two arguments.

It’s also possible to name a specific looper, but a NULL target. In this case, messages will
be targeted to the looper’s preferred receiver (the object returned by its
PreferredReceiver() function). For a BWindow, the preferred receiver is the current
focus view. Therefore, by passing a NULL target and a BWindow looper to SetTarget(),

myItem->SetTarget(NULL, myItem->Window());

the BMenuItem can be targeted to whatever BView happens to be in focus at the time
it’s invoked. This is useful for items like “Cut” and “Copy” that act on the current
selection. (Note, however, that if the PreferredReceiver() is NULL—if there’s no current
focus view—the BWindow itself will be the target.)

Member Functions

DR3 The Interface Kit – 131

At least one of the two arguments must point to a real object. If both target and looper
are NULL, SetTarget() fails and returns BAD_VALUE. When successful, it returns
NO_ERROR.

Target() returns the current target and, if a pointer to a looper is provided, fills in the
BLooper where the item will post messages. By default, both roles are filled by the
BWindow at the root of the menu hierarchy (the BWindow where the menu bar is
located). These defaults are established when the BMenuItem becomes part of a menu
hierarchy that’s rooted in a window, but only if another target (or looper) hasn’t already
been set. If a target hasn’t been set and the BMenuItem isn’t part of a rooted menu
hierarchy, Target() returns NULL.

See also: Looper() in the BReceiver and BView classes, PreferredReceiver() in the
BLooper and BWindow classes

SetTrigger(), Trigger()

virtual void SetTrigger(char trigger)

char Trigger(void) const

SetTrigger() sets the trigger character that the user can type to invoke the item while the
item’s menu is open on-screen. If a trigger is not set, the Interface Kit will select one
for the item, so it’s not necessary to call SetTrigger().

The character passed to this function has to match a character displayed in the item—
either the keyboard shortcut or a character in the label. The case of the character doesn’t
matter; lowercase arguments will match uppercase characters in the item and uppercase
arguments will match lowercase characters. When the item can be invoked by its
trigger, the trigger character is drawn in an eye-catching color.

If more than one character in the item matches the character passed, SetTrigger() tries
first to mark the keyboard shortcut. Failing that, it tries to mark an uppercase letter at
the beginning of a word. Failing that, it marks the first instance of the character in the
label.

If the trigger doesn’t match any characters in the item, the item won’t have a trigger, not
even one selected by the system.

Trigger() returns the character set by SetTrigger(), or NULL if SetTrigger() didn’t succeed
or if SetTrigger() was never called and the trigger is selected automatically.

See also: SetTriggersEnabled() in the BMenu class

Member Functions

132 – The Interface Kit DR3

Shortcut()

char Shortcut(ulong *modifiers = NULL) const

Returns the character that’s used as the keyboard shortcut for invoking the item, and
writes a mask of all the modifier keys the shortcut requires to the variable referred to by
modifiers. Since the Command key is required to operate the keyboard shortcut for any
menu item, COMMAND_KEY will always be part of the modifiers mask. The mask can
also be tested against the CONTROL_KEY, OPTION_KEY, and SHIFT_KEY constants.

The shortcut is set by the BMenuItem constructor.

See also: the BMenuItem constructor

Submenu()

BMenu *Submenu(void) const

Returns the BMenu object that the item controls, or NULL if the item doesn’t control a
submenu.

See also: the BMenuItem constructor, the BMenu class

Target() see SetTarget()

Trigger() see SetTrigger()

Overview

DR3 The Interface Kit – 133

BPoint

Derived from: none

Declared in: <interface/Point.h>

Overview

BPoint objects represent points on a two-dimensional coordinate grid. Each object
holds an x coordinate value and a y coordinate value declared as public data members.
These values locate a specific point, (x, y), relative to a given coordinate system.

Because the BPoint class defines a basic data type for graphic operations, its data
members are publicly accessible and it declares no virtual functions. It’s a simple class
that doesn’t inherit from BObject or any other class and doesn’t retain class information
that it can reveal at run time. In the Interface Kit, BPoint objects are typically passed
and returned by value, not through pointers.

For an introduction to coordinate geometry on the Be machine, see “The Coordinate
Space” on page 14.

Data Members

float x The coordinate value measured horizontally along the
x-axis.

float y The coordinate value measured vertically along the
y-axis.

Constructor

134 – The Interface Kit DR3

Constructor

BPoint()

inline BPoint(float x, float y)

inline BPoint(const BPoint& point)
inline BPoint(void)

Initializes a new BPoint object to (x, y), or to the same values as point. For example:

BPoint somePoint(155.7, 336.0);
BPoint anotherPoint(somePoint);

Here, both somePoint and anotherPoint are initialized to (155.7, 336.0).

If no coordinate values are assigned to the BPoint when it’s declared,

BPoint emptyPoint;

its initial values are indeterminate.

BPoint objects can also be initialized or modified using the Set() function,

emptyPoint.Set(155.7, 336.0);
anotherPoint.Set(221.5, 67.8);

or the assignment operator:

somePoint = anotherPoint;

See also: Set(), the assignment operator

Member Functions

ConstrainTo()

void ConstrainTo(BRect rect)

Constrains the point so that it lies inside the rect rectangle. If the point is already
contained in the rectangle, it remains unchanged. However, if it falls outside the
rectangle, it’s moved to the nearest edge. For example, this code

BPoint point(54.9, 76.3);
BRect rect(10.0, 20.0, 40.0, 80.0);
point.Constrain(rect);

modifies the point to (40.0, 76.3).

See also: Contains() in the BRect class

Operators

DR3 The Interface Kit – 135

PrintToStream()

void PrintToStream(void) const

Prints the contents of the BPoint object to the standard output stream (stdout) in the
form:

"BPoint(x, y)"

where x and y stand for the current values of the BPoint’s data members.

Set()

inline void Set(float x, float y)

Assigns the coordinate values x and y to the BPoint object. For example, this code

BPoint point;
point.Set(27.0, 53.4);

is equivalent to:

BPoint point;
point.x = 27.0;
point.y = 53.4;

See also: the BPoint constructor

Operators

= (assignment)

inline BPoint& operator =(const BPoint&)

Assigns the x and y values of one BPoint object to another BPoint:

BPoint a(21.5, 17.0);
BPoint b = a;

Point b, like point a, is set to (21.5, 17.0).

Operators

136 – The Interface Kit DR3

== (equality)

bool operator ==(const BPoint&) const

Compares the data members of two BPoint objects and returns TRUE if each one exactly
matches its counterpart in the other object, and FALSE if not. In the following example,
the equality operator would return FALSE:

BPoint a(21.5, 17.0);
BPoint b(17.5, 21.0);
if (a == b)

. . .

!= (inequality)

bool operator !=(const BPoint&) const

Compares two BPoint objects and returns TRUE unless their data members match exactly
(the two points are the same), in which case it returns FALSE. This operator is the inverse
of the == (equality) operator.

+ (addition)

BPoint operator +(const BPoint&) const

Combines two BPoint objects by adding the x coordinate of the second to the
x coordinate of the first and the y coordinate of the second to the y coordinate of the first,
and returns a BPoint object that holds the result. For example:

BPoint a(77.0, 11.0);
BPoint b(55.0, 33.0);
BPoint c = a + b;

Point c is initialized to (132.0, 44.0).

+= (addition and assignment)

BPoint& operator +=(const BPoint&)

Modifies a BPoint object by adding another point to it. As in the case of the + (addition)
operator, the members of the second point are added to their counterparts in the first
point:

BPoint a(77.0, 11.0);
BPoint b(55.0, 33.0);
a += b;

Point a is modified to (132.0, 44.0).

Operators

DR3 The Interface Kit – 137

– (subtraction)

BPoint operator –(const BPoint&) const

Subtracts one BPoint object from another by subtracting the x coordinate of the second
from the x coordinate of the first and the y coordinate of the second from the
y coordinate of the first, and returns a BPoint object that holds the result. For example:

BPoint a(99.0, 66.0);
BPoint b(44.0, 88.0);
BPoint c = a - b;

Point c is initialized to (55.0, –22.0).

–= (subtraction and assignment)

BPoint& operator –=(const BPoint&)

Modifies a BPoint object by subtracting another point from it. As in the case of the
– (subtraction) operator, the members of the second point are subtracted from their
counterparts in the first point. For example:

BPoint a(99.0, 66.0);
BPoint b(44.0, 88.0);
a -= b;

Point a is modified to (55.0, –22.0).

Operators

138 – The Interface Kit DR3

Overview

DR3 The Interface Kit – 139

BPolygon

Derived from: public BObject

Declared in: <interface/Polygon.h>

Overview

A BPolygon object represents a polygon—a closed, many-sided figure that describes an
area within a two-dimensional coordinate system. It differs from a BRect object in that
it can have any number of sides and the sides don’t have to be aligned with the
coordinate axes.

A BPolygon is defined as a series of connected points. Each point is a potential vertex
in the polygon. An outline of the polygon could be constructed by tracing a straight line
from the first point to the second, from the second point to the third, and so on through
the whole series, then by connecting the first and last points if they’re not identical.

The BView functions that draw a polygon—StrokePolygon() and FillPolygon()—take
BPolygon objects as arguments.

Constructor and Destructor

BPolygon()

BPolygon(BPoint *pointList, long numPoints)

BPolygon(const BPolygon *polygon)

BPolygon(void)

Initializes the BPolygon by copying numPoints from pointList, or by copying the list of
points from another polygon. If one polygon is constructed from another, the original
and the copy won’t share any data; independent memory is allocated for the copy to
hold a duplicate list of points.

If a BPolygon is constructed without a point list, points must be set with the AddPoints()
function.

See also: AddPoints()

Member Functions

140 – The Interface Kit DR3

~BPolygon()

virtual ~BPolygon(void)

Frees all the memory allocated to hold the list of points.

Member Functions

AddPoints()

void AddPoints(const BPoint *pointList, long numPoints)

Appends numPoints from pointList to the list of points that already define the polygon.

See also: the BPolygon constructor

CountPoints()

inline long CountPoints(void) const

Returns the number of points that define the polygon.

Frame()

inline BRect Frame(void) const

Returns the polygon’s frame rectangle—the smallest rectangle that encloses the entire
polygon.

MapTo()

void MapTo(BRect source, BRect destination)

Modifies the polygon so that it fits the destination rectangle exactly as it originally fit the
source rectangle. Each vertex of the polygon is modified so that it has the same
proportional position relative to the sides of the destination rectangle as it originally had
to the sides of the source rectangle.

The polygon doesn’t have to be contained in either rectangle. However, to modify a
polygon so that it’s exactly inscribed in the destination rectangle, you should pass its
frame rectangle as the source:

BRect frame = myPolygon->Frame();
myPolygon->MapTo(frame, anotherRect);

Operators

DR3 The Interface Kit – 141

PrintToStream()

void PrintToStream(void) const

Prints the BPolygon’s point list to the standard output stream (stdout). The BPoint
version of this function is called to report each point as a string in the form

"BPoint(x, y)"

where x and y stand for the coordinate values of the point in question.

See also: PrintToStream() in the BPoint class

Operators

= (assignment)

BPolygon& operator =(const BPolygon&)

Copies the point list of one BPolygon object and assigns it to another BPolygon. After
the assignment, the two objects describe the same polygon, but are independent of each
other. Destroying one of the objects won’t affect the other.

Operators

142 – The Interface Kit DR3

Overview

DR3 The Interface Kit – 143

BPopUpMenu

Derived from: public BMenu

Declared in: <interface/PopUpMenu.h>

Overview

A BPopUpMenu is a specialized menu that’s typically used in isolation, rather than as
part of an extensive menu hierarchy. By default, it operates in radio mode—the last item
selected by the user, and only that item, is marked in the menu.

A menu of this kind can be used to choose one from among a limited set of mutually
exclusive states—to pick a paper size or paragraph style, for example, or to select a
category of information. It should not be used to group different kinds of choices (as
other menus may), nor should it include items that initiate actions rather than set states,
except in certain well-defined cases.

A pop-up menu can be used in any of three ways:

• It can be controlled by a BMenuBar object, often one that contains just a single
item. The BMenuBar, in effect, functions as a button that pops up a list. The label
of the marked item in the list can be displayed as the label of the controlling item
in the BMenuBar. In this way, the BMenuBar is able to show the current state of
the hidden menu. When this is the case, the menu pops up so its marked item is
directly over the controlling item.

• A BPopUpMenu can also be controlled by a view other than a BMenuBar. It
might be associated with a particular image the view displays, for example, and
appear over the image when the user moves the cursor there and presses the
mouse button. Or it might be associated with the view as a whole and come up
under the cursor wherever the cursor happens to be. When the view is notified of a
mouse-down event, it calls BPopUpMenu’s Go() function to show the menu on-
screen.

• Finally, the application’s master menu must be a BPopUpMenu object. This
menu should be set up to behave like an ordinary menu, even though it’s not
included in an ordinary menu hierarchy. (The master menu is the one that holds
items with application-wide significance, like “About . . .” and “Quit”. It’s
accessible when the application is the active application by pressing on the
application icon in the left top corner of the screen. See SetAppMenu() in the
BApplication class.)

Constructor and Destructor

144 – The Interface Kit DR3

Other than Go() (and the constructor), this class implements no functions that you’d
ever need to call from application code. In all other respects, a BPopUpMenu can be
treated like any other BMenu.

Constructor and Destructor

BPopUpMenu()

BPopUpMenu(const char *name, bool radioMode = TRUE,
bool labelFromMarked = TRUE,
menu_layout layout = ITEMS_IN_COLUMN)

Initializes the BPopUpMenu object. If the object is added to a BMenuBar, its name also
becomes the initial label of its controlling item (just as for other BMenus).

If the labelFromMarked flag is TRUE (as it is by default), the label of the controlling item
will change to reflect the label of the item that the user last selected. In addition, the
menu will operate in radio mode (regardless of the value passed as the radioMode flag).
When the menu pops up, it will position itself so that the marked item appears directly
over the controlling item in the BMenuBar.

If labelFromMarked is FALSE, the menu pops up < so that its first item is over the
controlling item >.

If the radioMode flag is TRUE (as it is by default), the last item selected by the user will
always be marked. In this mode, one and only one item within the menu can be marked
at a time. If radioMode is FALSE, items aren’t automatically marked or unmarked.

However, the radioMode flag has no effect unless the labelFromMarked flag is FALSE.
As long as labelFromMarked is TRUE, radio mode will also be TRUE.

The BPopUpMenu that’s used as the application’s master menu should have both
labelFromMarked and radioMode set to FALSE.

The layout of the items in a BPopUpMenu can be either ITEMS_IN_ROW or the default
ITEMS_IN_COLUMN. It should never be ITEMS_IN_MATRIX. The menu is resized so that it
exactly fits the items that are added to it.

The new BPopUpMenu is empty; you add items to it by calling BMenu’s AddItem()
function.

See also: SetRadioMode() and SetLabelFromMarked() in the BMenu class

Member Functions

DR3 The Interface Kit – 145

~BPopUpMenu()

virtual ~BPopUpMenu(void)

Does nothing. The BMenu destructor is sufficient to clean up after a BPopUpMenu.

Member Functions

Go()

BMenuItem *Go(BPoint screenPoint, bool deliversMessage = FALSE)

Places the pop-up menu on-screen and keeps it there as long as the user holds a mouse
button down. The menu appears on-screen so that its left top corner is located at
screenPoint in the screen coordinate system. When the user releases the mouse button,
the menu is hidden again and Go() returns. If the user invoked an item in the menu, it
returns a pointer to the item. If no item was invoked, it returns NULL.

Go() is typically called from within the MouseDown() function of a BView. For
example:

void MyView::MouseDown(BPoint point)
{
 BMenuItem *selected;
 BMessage *copy;
 . . .
 ConvertToScreen(&point);
 selected = myPopUp->Go(point);
 . . .
 if (selected) {
 BLooper *looper;
 BReceiver *target = selected->Target(&looper);
 if (target == NULL)
 target = looper->PreferredReceiver();
 copy = new BMessage(selected->Message());
 looper->PostMessage(copy, target);
 }
 . . .
}

Go() operates in two modes:

• If the deliversMessage flag is TRUE, the BPopUpMenu works just like a menu
that’s controlled by a BMenuBar. When the user invokes an item in the menu, the
item posts a message to its target receiver.

• If the deliversMessage flag is FALSE, a message is not posted. Invoking an item
doesn’t automatically accomplish anything. It’s up to the application to look at
the returned BMenuItem and decide what to do. It can mimic the behavior of

Member Functions

146 – The Interface Kit DR3

other menus and post the message—as shown in the example above—or it can
take some other course of action.

In the example, a copy of the BMessage returned by the item’s Message() function was
posted, not the returned message itself. Posting the returned message would turn it over
to a message loop, which would eventually delete it. It would then be unavailable the
next time the item was invoked.

See also: SetMessage() in the BMenuItem class

ScreenLocation()

protected:
virtual BPoint ScreenLocation(void)

Determines where the pop-up menu should appear on-screen (when it’s being run
automatically, not by Go()). As explained in the description of the class constructor, this
largely depends on whether the label of the superitem changes to reflect the item that’s
currently marked in the menu. The point returned is stated in the screen coordinate
system.

This function is called only for BPopUpMenus that have been added to a menu
hierarchy (a BMenuBar). You should not call it to determine the point to pass to Go().
However, you can override it to change where a customized pop-up menu defined in a
derived class appears on-screen when it’s controlled by a BMenuBar.

See also: SetLabelFromMarked() and ScreenLocation() in the BMenu class, the
BPopUpMenu constructor

Overview

DR3 The Interface Kit – 147

BRadioButton

Derived from: public BControl

Declared in: <interface/RadioButton.h>

Overview

A BRadioButton object draws a labeled, two-state button that’s displayed in a group
along with other similar buttons. The button itself is a round icon that has a filled center
when the BRadioButton is turned on, and is empty when it’s off. The label appears next
to the icon.

Only one radio button in the group can be on at a time. When the user clicks a button to
turn it on, the button that’s currently on is turned off. The user can turn a button off only
by turning another one on; one button in the group must be on at all times. The button
that’s on has a value of 1; the others have a value of 0.

The BRadioButton class handles the interaction between radio buttons in the following
way: A direct user action can only turn on a radio button, not turn it off. However, when
the user turns a button on, the BRadioButton object turns off all sibling
BRadioButtons—all BRadioButtons that have the same parent as the one that was
turned on.

This means that a parent view should have no more than one group of radio buttons
among its children. Each set of radio buttons should be assigned a separate parent—
perhaps an empty BView that simply contains the radio buttons and does no drawing of
its own.

Constructor

BRadioButton()

BRadioButton(BRect frame, const char *name, const char *label,
BMessage *message,
ulong resizingMode = FOLLOW_LEFT_TOP,
ulong flags = WILL_DRAW)

Initializes the BRadioButton by passing all arguments to the BControl constructor
without change. BControl initializes the radio button’s label and assigns it a model
message that identifies the action that should be taken when the radio button is turned

Member Functions

148 – The Interface Kit DR3

on. When the user turns the button on, the BRadioButton posts a copy of the message to
the target receiver.

The frame, name, resizingMode, and flags arguments are the same as those declared for
the BView class and are passed without change from BControl to the BView
constructor.

The frame rectangle of a BRadioButton must be at least 12 units high (a difference of 11
between the bottom and the top) to accommodate the icon and the label in the default
font. Anything over a height of 12 is superfluous; the BRadioButton draws at the
bottom of the rectangle beginning at the left side. It ignores any extra space at the top or
on the right. (However, the user can click anywhere within frame to turn on the radio
button).

See also: the BControl and BView constructors

Member Functions

Draw()

virtual void Draw(BRect updateRect)

Draws the radio button—the circular icon—and its label. The center of the icon is filled
when the BRadioButton’s value is 1; it’s left empty when the value is 0.

See also: Draw() in the BView class

MouseDown()

virtual void MouseDown(BPoint point)

Responds to a mouse-down event in the radio button by tracking the cursor while the
user holds the mouse button down. If the cursor is pointing to the radio button when the
user releases the mouse button, this function turns the button on (and consequently turns
all sibling BRadioButtons off), calls the BRadioButton’s Draw() function, and posts a
message that will be delivered to the target BReceiver. Unlike a BCheckBox, a
BRadioButton posts the message—it’s “invoked”—only when it’s turned on, not when
it’s turned off.

To set the value of each radio button in the group, this function calls SetValue() (a hook
function defined in the BControl class).

See also: Invoke() and SetTarget() in the BControl class

Member Functions

DR3 The Interface Kit – 149

SetValue()

virtual void SetValue(long value)

Augments the BControl version of SetValue() to turn all sibling BRadioButtons off (set
their values to 0) when this BRadioButton is turned on (when the value passed is
anything but 0).

See also: SetValue() in the BControl class

Member Functions

150 – The Interface Kit DR3

Overview

DR3 The Interface Kit – 151

BRect

Derived from: none

Declared in: <interface/Rect.h>

Overview

A BRect object represents a rectangle, one with sides that parallel the x and y coordinate
axes. The rectangle is defined by its left, top, right, and bottom coordinates, as
illustrated below:

In a valid rectangle, the top y coordinate value is never greater than the bottom
y coordinate, and the left x coordinate value is never greater than the right.

A BRect is the simplest, most basic way of specifying an area in a two-dimensional
coordinate system. Windows, scroll bars, buttons, text fields, and the screen itself are all
specified as rectangles. For more details on the definition of a rectangle, see
“Coordinate Geometry” on page 16 in the chapter introduction.

When used to define the frame of a window or a view, or the bounds of a bitmap, the
sides of the rectangle must line up on screen pixels. For this reason, the rectangle can’t
have any fractional coordinates. Coordinate units have a one-to-one correspondence
with screen pixels.

Integral coordinates fall at the center of screen pixels, so frame rectangles cover a larger
area than their coordinate values would indicate. Just as the number of elements in an
array is one greater than the largest index, a frame rectangle covers one more column of
pixels than its width and one more row than its height.

bottom

top

left right

y-axis

x-axis

Data Members

152 – The Interface Kit DR3

The figure below illustrates why this is the case. It shows a rectangle with a right side
8.0 units from its left (62.0–54.0) and a bottom 4.0 units below its top (17.0–13.0).
Because the pixels that lie on all four sides of the rectangle are considered to be inside it,
there’s an extra pixel in each direction. When the rectangle is filled on-screen, it covers
a 9-pixel-by-5-pixel area.

Because the BRect structure is a basic data type for graphic operations, it’s constructed
more simply than most other Interface Kit classes: All its data members are publicly
accessible, it doesn’t have virtual functions, it doesn’t inherit from BObject or any other
class, and it doesn’t retain class information that it can reveal at run time. Within the
Interface Kit, BRect objects are passed and returned by value.

Data Members

float left The coordinate value of the rectangle’s leftmost side (the
smallest x coordinate in a valid rectangle).

float top The coordinate value of the rectangle’s top (the smallest
y coordinate in a valid rectangle).

float right The coordinate value of the rectangle’s rightmost side
(the largest x coordinate in a valid rectangle).

float bottom The coordinate value of the rectangle’s bottom (the
largest y coordinate in a valid rectangle).

12

13

14

15

16

17

18

52

(54.0, 13.0)

(62.0, 17.0)

5453 55 5656 58 6059 61 6362 6564

Constructor

DR3 The Interface Kit – 153

Constructor

BRect()

inline BRect(float left, float top, float right, float bottom)

inline BRect(BPoint leftTop, BPoint rightBottom)

inline BRect(const BRect& rect)
inline BRect(void)

Initializes a BRect with its four coordinate values—left, top, right, and bottom. The four
values can be directly stated,

BRect rect(11.0, 24.7, 301.5, 99.0);

or they can be taken from two points designating the rectangle’s left top and right
bottom corners,

BPoint leftTop(11.0, 24.7);
BPoint rightBottom(301.5, 99.0);
BRect rect(leftTop, rightBottom);

or they can be copied from another rectangle:

BRect anotherRect(11.0, 24.7, 301.5, 99.0);
BRect rect(anotherRect);

A rectangle that’s not assigned any initial values,

BRect rect;

is constructed to be invalid (its top and left are greater than its right and bottom), until a
specific assignment is made, typically with the Set() function:

rect.Set(77.0, 2.25, 510.8, 393.0);

See also: Set()

Member Functions

Contains()

bool Contains(BPoint point) const
bool Contains(BRect rect) const

Returns TRUE if point—or rect—lies inside the area the BRect defines, and FALSE if not.
A rectangle contains a point even if the point coincides with one of the rectangle’s
corners or lies on one of its edges.

Member Functions

154 – The Interface Kit DR3

One rectangle contains another if their union is the same as the first rectangle and their
intersection is the same as the second—that is, if the second rectangle lies entirely
within the first. A rectangle is considered to be inside another rectangle even if they
have one or more sides in common. Two identical rectangles contain each other.

See also: Intersects(), the & (intersection) and | (union) operators, ConstrainTo() in the
BPoint class

Height() see Width()

InsetBy()

void InsetBy(float horizontal, float vertical)
void InsetBy(BPoint point)

Modifies the BRect by insetting its left and right sides by horizontal units and its top and
bottom sides by vertical units. (If a point is passed, its x coordinate value substitutes for
horizontal and its y coordinate value substitutes for vertical.)

For example, this code

BRect rect(10.0, 40.0, 100.0, 140.0);
rect.InsetBy(20.0, 30.0);

produces a rectangle identical to one that could be constructed as follows:

BRect rect(30.0, 70.0, 80.0, 110.0);

If horizontal or vertical is negative, the rectangle becomes larger in that dimension,
rather than smaller.

See also: OffsetBy()

Intersects()

bool Intersects(BRect rect) const

Returns TRUE if the BRect has any area—even a corner or part of a side—in common
with rect, and FALSE if it doesn’t.

See also: the & (intersection) operator

Member Functions

DR3 The Interface Kit – 155

IsValid()

inline bool IsValid(void) const

Returns TRUE if the BRect’s right side is greater than or equal to its left and its bottom is
greater than or equal to its top, and FALSE otherwise. An invalid rectangle doesn’t
designate any area, not even a line or a point.

LeftBottom() see SetLeftBottom()

LeftTop() see SetLeftTop()

OffsetBy(), OffsetTo()

void OffsetBy(float horizontal, float vertical)
void OffsetBy(BPoint point)

void OffsetTo(BPoint point)
void OffsetTo(float x, float y)

These functions reposition the rectangle in its coordinate system, without altering its
size or shape.

OffsetBy() adds horizontal to the left and right coordinate values of the rectangle and
vertical to its top and bottom coordinates. (If a point is passed, point.x substitutes for
horizontal and point.y for vertical.)

OffsetTo() moves the rectangle so that its left top corner is at point—or at (x, y). The
coordinate values of all its sides are adjusted accordingly.

See also: InsetBy()

PrintToStream()

void PrintToStream(void) const

Prints the contents of the BRect object to the standard output stream (stdout) in the
form:

"BRect(left, top, right, bottom)"

where left, top, right, and bottom stand for the current values of the BRects’s data
members.

RightBottom() see SetRightBottom()

Member Functions

156 – The Interface Kit DR3

RightTop() see SetRightTop()

Set()

inline void Set(float left, float top, float right, float bottom)

Assigns the values left, top, right, and bottom to the BRect’s corresponding data
members. The following code

BRect rect;
rect.Set(0.0, 25.0, 50.0, 75.0);

is equivalent to:

BRect rect;
rect.left = 0.0;
rect.top = 25.0;
rect.right = 50.0;
rect.bottom = 75.0;

See also: the BRect constructor

SetLeftBottom(), LeftBottom()

void SetLeftBottom(const BPoint point)

inline BPoint LeftBottom(void) const

These functions set and return the left bottom corner of the rectangle. SetLeftBottom()
alters the BRect so that its left bottom corner is at point, and LeftBottom() returns its
current left and bottom coordinates as a BPoint object.

See also: SetLeftTop(), SetRightBottom(), SetRightTop()

SetLeftTop(), LeftTop()

void SetLeftTop(const BPoint point)

inline BPoint LeftTop(void) const

These functions set and return the left top corner of the rectangle. SetLeftTop() alters the
BRect so that its left top corner is at point, and LeftTop() returns its current left and top
coordinates as a BPoint object.

See also: SetLeftBottom(), SetRightTop(), SetRightBottom()

Member Functions

DR3 The Interface Kit – 157

SetRightBottom(), RightBottom()

void SetRightBottom(const BPoint point)

inline BPoint RightBottom(void) const

These functions set and return the right bottom corner of the rectangle.
SetRightBottom() alters the BRect so that its right bottom corner is at point, and
RightBottom() returns its current right and bottom coordinates as a BPoint object.

See also: SetRightTop(), SetLeftBottom(), SetLeftTop()

SetRightTop(), RightTop()

void SetRightTop(const BPoint point)

inline BPoint RightTop(void) const

These functions set and return the right top corner of the rectangle. SetRightTop() alters
the BRect so that its right top corner is at point, and RightTop() returns its current right
and top coordinates as a BPoint object.

See also: SetRightBottom(), SetLeftTop(), SetLeftBottom()

Width(), Height()

inline float Width(void) const

inline float Height(void) const

These functions return the width of the rectangle (the difference between its bottom and
top coordinates) and its height (the difference between its right and left sides). If either
value is negative, the rectangle is invalid.

The width and height of a rectangle are not accurate guides to the number of pixels it
covers on screen. As illustrated in the “Overview” to this class, a rectangle without
fractional coordinates covers an area that’s one pixel broader than its coordinate width
and one pixel taller than its coordinate height.

Operators

158 – The Interface Kit DR3

Operators

= (assignment)

inline BRect& operator =(const BRect&)

Assigns the data members of one BRect object to another BRect:

BRect a(27.2, 36.8, 230.0, 359.1);
BRect b = a;

Rectangle b is identical to rectangle a.

== (equality)

bool operator ==(BRect) const

Compares the data members of two BRect objects and returns TRUE if each one exactly
matches its counterpart in the other object, and FALSE if any of the members don’t match.
In the following example, the equality operator would return FALSE, since the two
objects have different right boundaries:

BRect a(11.5, 22.5, 66.5, 88.5);
BRect b(11.5, 22.5, 46.5, 88.5);
if (a == b)
 . . .

!= (inequality)

char operator !=(BRect) const

Compares two BRect objects and returns TRUE unless their data members match exactly
(the two rectangles are identical), in which case it returns FALSE. This operator is the
inverse of the == (equality) operator.

& (intersection)

BRect operator &(BRect) const

Returns the intersection of two rectangles—a rectangle enclosing the area they have in
common. The shaded area below shows where the two outlined rectangles intersect.

Operators

DR3 The Interface Kit – 159

The intersection is computed by taking the greatest left and top coordinate values of the
two rectangles, and the smallest right and bottom values. In the following example,

BRect a(10.0, 40.0, 80.0, 100.0);
BRect b(35.0, 15.0, 95.0, 65.0);
BRect c = a & b;

rectangle c will be identical to one constructed as follows:

BRect c(35.0, 40.0, 80.0, 65.0);

If the two rectangles don’t actually intersect, the result will be invalid. You can test for
this by calling the Intersects() function on the original rectangles, or by calling IsValid()
on the result.

See also: Intersects(), IsValid(), the | (union) operator

| (union)

BRect operator |(BRect) const

Returns the union of two rectangles—the smallest rectangle that encloses them both.
The shaded area below illustrates the union of the two outlined rectangles. Note that it
includes areas not in either of them.

The union is computed by selecting the smallest left and top coordinate values from the
two rectangles, and the greatest right and bottom coordinate values. In the following
example,

BRect a(10.0, 40.0, 80.0, 100.0);
BRect b(35.0, 15.0, 95.0, 65.0);
BRect c = a | b;

rectangle c will be identical to one constructed as follows:

BRect c(10.0, 15.0, 95.0, 100.0);

Note that two rectangles will have a valid union even if they don’t intersect.

See also: the & (intersection) operator

Operators

160 – The Interface Kit DR3

Overview

DR3 The Interface Kit – 161

BRegion

Derived from: public BObject

Declared in: <interface/Region.h>

Overview

A BRegion object describes an arbitrary area within a two-dimensional coordinate
system. The area can have irregular boundaries, contain holes, or be discontinuous. It’s
convenient to think of a region as a set of locations or points, rather than as a closed
shape like a rectangle or a polygon.

The points that a region includes can be described by a set of rectangles. Any point that
lies within at least one of the rectangles belongs to the region. You can define a region
incrementally by passing rectangles to functions like Set(), Include(), and Exclude().

BView's GetClippingRegion() function modifies a BRegion object so that it represents
the current clipping region of the view. A BView can pass GetClippingRegion() a
pointer to an empty BRegion,

BRegion temp;
GetClippingRegion(&temp);

then call BRegion’s Intersects() and Contains() functions to test whether the potential
drawing it might do falls within the region:

if (temp.Intersects(someRect))
 . . .

Constructor and Destructor

BRegion()

BRegion(const BRegion& region)

BRegion(void)

Initializes the BRegion object to have the same area as another region—or, if no other
region is specified, to an empty region.

Member Functions

162 – The Interface Kit DR3

The original BRegion object and the newly constructed one each have their own copies
of the data describing the region. Altering or freeing one of the objects will not affect
the other.

BRegion objects can be allocated on the stack and assigned to other objects:

BRegion regionOne(anotherRegion);
BRegion regionTwo = regionOne;

However, due to their size, it’s more efficient to pass them by pointer rather than by
value.

~BRegion

virtual ~BRegion(void)

Frees any memory that was allocated to hold data describing the region.

Member Functions

Contains()

bool Contains(BPoint point) const

Returns TRUE if point lies within the region, and FALSE if not.

Exclude()

void Exclude(BRect rect)
void Exclude(const BRegion *region)

Modifies the region so that it excludes all points contained within rect or region that it
might have included before.

See also: Include(), IntersectWith()

Frame()

BRect Frame(void) const

Returns the frame rectangle of the BRegion—the smallest rectangle that encloses all the
points within the region.

If the region is empty, the rectangle returned won’t be valid.

See also: IsValid() in the BRect class

Member Functions

DR3 The Interface Kit – 163

Include()

void Include(BRect rect)
void Include(const BRegion *region)

Modifies the region so that it includes all points contained within the rect or region
passed as an argument.

See also: Exclude()

IntersectWith()

void IntersectWith(const BRegion *region)

Modifies the region so that it includes only those points that it has in common with
another region.

See also: Include()

Intersects()

bool Intersects(BRect rect) const

Returns TRUE if the BRegion has any area in common with rect, and FALSE if not.

MakeEmpty()

void MakeEmpty(void)

Empties the BRegion of all its points. It will no longer designate any area and its frame
rectangle won’t be valid.

See also: the BRegion constructor

OffsetBy()

void OffsetBy(long horizontal, long vertical)

Offsets all points contained within the region by adding horizontal to each x coordinate
value and vertical to each y coordinate value.

Operators

164 – The Interface Kit DR3

PrintToStream()

void PrintToStream(void) const

Prints the contents of the BRegion to the standard output stream (stdout) as an array of
strings. Each string describes a rectangle in the form:

"BRect(left, top, right, bottom)"

where left, top, right, and bottom are the coordinate values that define the rectangle.

The first string in the array describes the BRegion’s frame rectangle. Each subsequent
string describes one portion of the area included in the BRegion.

See also: PrintToStream() in the BRect class, Frame()

Set()

void Set(BRect rect)

Modifies the BRegion so that it describes an area identical to rect. A subsequent call to
Frame() should return the same rectangle (unless some other change was made to the
region in the interim).

See also: Include(), Exclude()

Operators

= (assignment)

BRegion& operator =(const BRegion&)

Assigns the region described by one BRegion object to another BRegion:

BRegion region = anotherRegion;

After the assignment, the two regions will be identical, but independent, copies of one
another. Each object allocates its own memory to store the description of the region.

Overview

DR3 The Interface Kit – 165

BScrollBar

Derived from: public BView

Declared in: <interface/ScrollBar.h>

Overview

A BScrollBar object displays a scroll bar that users can operate to scroll the contents of
another view, a target view. Scroll bars usually come in pairs, one horizontal and one
vertical, and are often grouped as siblings of the target view under a common parent.
That way, when the parent is resized, the target and scroll bars can be automatically
resized to match. (A companion class, BScrollView, defines just such a container view;
a BScrollView object sets up the scroll bars for a target view and makes itself the parent
of the target and the scroll bars.)

The Update Mechanism

BScrollBars are different from other views in one important respect: All their drawing
and event handling is carried out within the Application Server, not in the application. A
BScrollBar object doesn’t receive Draw() or MouseDown() notifications; the Server
intercepts updates and events that would otherwise be reported to the BScrollBar and
handles them itself. As the user moves the knob on a scroll bar or presses a scroll
button, the Application Server continuously refreshes the scroll bar’s image on-screen
and informs the application with a steady stream of messages reporting value-changed
events.

The window dispatches these event messages by calling the BScrollBar’s
ValueChanged() function. Each function call notifies the BScrollBar of a change in its
value and, consequently, of a need to scroll the target view.

Confining the update mechanism for scroll bars to the Application Server limits the
volume of communication between the application and Server and enhances the
efficiency of scrolling. The application’s messages to the Server can concentrate on
updating the target view as its contents are being scrolled, rather than on updating the
scroll bars themselves.

Overview

166 – The Interface Kit DR3

Value and Range

A scroll bar’s value determines what the target view displays. The default assumption is
that the left coordinate value of the target view’s bounds rectangle should match the
value of the horizontal scroll bar, and the top of the target view’s bounds rectangle
should match the value of the vertical scroll bar. When a BScrollBar is notified of a
change of value (through its ValueChanged() function), it scrolls the target view to put
the new value at the left or top of the bounds rectangle.

The value reported in a ValueChanged() notification depends on where the user moves
the scroll bar’s knob and on the range of values the scroll bar represents. The range is
first set in the BScrollBar constructor and can be modified by the SetRange() function.

The range must be large enough to bring all the coordinate values where the target view
can draw into its bounds rectangle. If everything the target view can draw is conceived
as being enclosed in a “data rectangle,” the range of a horizontal scroll bar must extend
from a minimum that makes the left side of the target’s bounds rectangle coincide with
the left side of its data rectangle, to a maximum that puts the right side of the bounds
rectangle at the right side of the data rectangle. This is illustrated in part below:

As this illustration helps demonstrate, the maximum value of a horizontal scroll bar can
be no less than the right coordinate value of the data rectangle minus the width of the
bounds rectangle. Similarly, for a vertical scroll bar, the maximum value can be no less
than the bottom coordinate of the data rectangle minus the height of the bounds
rectangle. The range of a scroll bar subtracts the dimensions of the target’s bounds
rectangle from its data rectangle. (The minimum values of horizontal and vertical scroll
bars can be no greater than the left and top sides of the data rectangle.)

What the target view can draw may change from time to time as the user adds or deletes
data. As this happens, the range of the scroll bar should be updated with the SetRange()
function. The range may also need to be recalculated when the target view is resized.

target view’s
data rectangle

target view’s
bounds rectangle

extent of the
bounds rectangle

range of the
horizontal scroll bar

Hook Functions

DR3 The Interface Kit – 167

Hook Functions

ValueChanged() Scrolls the target view when the BScrollBar is informed
that its value has changed; can be implemented to alter
the default interpretation of the scroll bar’s value.

Constructor and Destructor

BScrollBar()

BScrollBar(BRect frame, const char *name, BView *target,
long min, long max, orientation posture)

Initializes the BScrollBar and connects it to the target view that it will scroll. It will be
a horizontal scroll bar if posture is HORIZONTAL and a vertical scroll bar if posture is
VERTICAL.

The range of values that the scroll bar can represent at the outset is set by min and max.
These values should be calculated from the boundaries of a rectangle that encloses the
entire contents of the target view—everything that it can draw. If min and max are both
0, the scroll bar is disabled and the knob is not drawn.

The object’s initial value is 0 < even if that falls outside the range set for the scroll bar >.

The other arguments, frame and name, are the same as for other BViews:

• The frame rectangle locates the scroll bar within its parent view. A horizontal
scroll bar should be exactly 12.0 units high, and a vertical scroll bar should be
exactly 12.0 pixels wide. < These values may change as the user interface
changes. >

• The BScrollBar’s name identifies it and permits it to be located by the FindView()
function. It can be NULL.

Unlike other BViews, the BScrollBar constructor doesn’t set an automatic resizing
mode. By default, scroll bars have the resizing behavior that befits their posture—
horizontal scroll bars resize themselves horizontally (as if they had a resizing mode of
FOLLOW_LEFT_RIGHT_BOTTOM) and vertical scroll bars resize themselves vertically (as if
their resizing mode was FOLLOW_TOP_RIGHT_BOTTOM).

~BScrollBar()

virtual ~BScrollBar(void)

Disconnects the scroll bar from its target.

Member Functions

168 – The Interface Kit DR3

Member Functions

GetRange() see SetRange()

GetSteps() see SetSteps()

Orientation()

inline orientation Orientation(void) const

Returns HORIZONTAL if the object represents a horizontal scroll bar and VERTICAL if it
represents a vertical scroll bar.

See also: the BScrollBar constructor

SetRange(), GetRange()

void SetRange(long min, long max)

void GetRange(long *min, long *max) const

These functions modify and return the range of the scroll bar. SetRange() sets the
minimum and maximum values of the scroll bar to min and max. GetRange() places the
current minimum and maximum in the variables that min and max refer to.

If the scroll bar’s current value falls outside the new range, it will be reset to the closest
value—either min or max—within range. ValueChanged() is called to inform the
BScrollBar of the change whether or not it’s attached to a window.

If the BScrollBar is attached to a window, any change in its range will be immediately
reflected on-screen. The knob will move to the appropriate position to reflect the current
value.

Setting both the minimum and maximum to 0 disables the scroll bar. It will be drawn
without a knob.

See also: the BScrollBar constructor

SetSteps(), GetSteps()

void SetSteps(long smallStep, long bigStep)

void GetSteps(long *smallStep, long *bigStep) const

SetSteps() sets how much a single user action should change the value of the scroll
bar—and therefore how far the target view should scroll. GetSteps() provides the
current settings.

Member Functions

DR3 The Interface Kit – 169

When the user presses one of the scroll buttons at either end of the scroll bar, its value
changes by a smallStep. When the user clicks in the bar itself (other than on the knob),
it changes by a bigStep. For an application that displays text, the small step of a vertical
scroll bar should be large enough to bring another line of text into view.

The default small step is 1, which should be too small for most purposes; the default
large step is 10, which is also probably too small.

< Currently, a BScrollBar’s steps can be successfully set only after it’s attached to a
window. >

See also: ValueChanged()

SetTarget(), Target()

void SetTarget(BView *view)

void SetTarget(char *name)

inline BView *Target(void) const

These functions set and return the target of the BScrollBar (the view that the scroll bar
scrolls). SetTarget() sets the target to view, or to the BView identified by name. Target()
returns the current target view. The target can also be set when the BScrollBar is
constructed.

SetTarget() can be called either before or after the BScrollBar is attached to a window.
If the target is set by name, the named view must eventually be found within the same
window as the scroll bar. Typically, the target and its scroll bars are children of a
container view that serves to bind them together as a unit.

See also: the BScrollBar constructor, ValueChanged()

SetValue(), Value()

void SetValue(long value)

long Value(void) const

These functions modify and return the value of the scroll bar. The value is usually set as
the result of user actions; SetValue() provides a way to do it programmatically. Value()
returns the current value, whether set by SetValue() or by the user.

SetValue() assigns a new value to the scroll bar and calls the ValueChanged() hook
function, whether or not the new value is really a change from the old. If the value
passed lies outside the range of the scroll bar, the BScrollBar is reset to the closest value
within range—that is, to either the minimum or the maximum value previously
specified.

Member Functions

170 – The Interface Kit DR3

If the scroll bar is attached to a window, changing its value updates its on-screen display.
The call to ValueChanged() enables the object to scroll the target view so that it too is
updated to conform to the new value.

The initial value of a scroll bar is 0.

See also: ValueChanged(), SetRange()

Target() see SetTarget()

Value() see SetValue()

ValueChanged()

virtual void ValueChanged(long newValue)

Responds to a notification that the value of the scroll bar has changed to newValue. For
a horizontal scroll bar, this function interprets newValue as the coordinate value that
should be at the left side of the target view’s bounds rectangle. For a vertical scroll bar,
it interprets newValue as the coordinate value that should be at the top of the rectangle.
It calls ScrollTo() to scroll the target view’s contents accordingly.

ValueChanged() does nothing if a target BView hasn’t been set—or if the target has
been set by name, but the name doesn’t correspond to an actual BView within the scroll
bar’s window.

Derived classes can override this function to interpret newValue differently, or to do
something in addition to scrolling the target view.

ValueChanged() is called as the result both of value-changed event messages received
from the Application Server and of SetValue() and SetRange() function calls within the
application.

See also: SetTarget()

Overview

DR3 The Interface Kit – 171

BScrollView

Derived from: public BView

Declared in: <interface/ScrollView.h>

Overview

A BScrollView object is a container for another view, a target view, typically a view that
can be scrolled. The BScrollView creates and positions the scroll bars the target view
needs and makes itself the parent of the scroll bars and the target view. It’s a convenient
way to set up scroll bars for another view.

If requested, the BScrollView draws a one-pixel wide black border around its children.
Otherwise, it does no drawing and simply contains the family of views it set up.

The ScrollBar() function provides access to the scroll bars the BScrollView creates, so
you can set their ranges and values as needed.

Constructor and Destructor

BScrollView()

BScrollView(const char *name, BView *target,
ulong resizingMode = FOLLOW_LEFT_TOP, ulong flags = 0,
bool horizontal = FALSE, bool vertical = FALSE,
bool bordered = TRUE)

Initializes the BScrollView. It will have a frame rectangle large enough to contain the
target view and any scroll bars that are requested. If horizontal is TRUE, there will be a
horizontal scroll bar. If vertical is TRUE, there will be a vertical scroll bar. Scroll bars
are not provided unless you ask for them.

If bordered is TRUE, as it is by default, the frame rectangle will also be large enough to
draw a narrow black border around the target view and scroll bars. A BScrollView can
be used without scroll bars to simply contain and border the target view.

The BScrollView adapts its frame rectangle from the frame rectangle of the target view.
It positions itself so that its left and top sides are exactly where the left and top sides of
the target view originally were. It then adds the target view as its child along with any

Member Functions

172 – The Interface Kit DR3

requested scroll bars. In the process, it modifies the target view’s frame rectangle (but
not its bounds rectangle) so that it will fit within its new parent.

If the resize mode of the target view is FOLLOW_ALL_SIDES, it and the scroll bars will be
automatically resized to fill the container view whenever the container view is resized.

The scroll bars created by the BScrollView have an initial range extending from a
minimum of 0 to a maximum of 1000. You’ll generally need to ask for the scroll bars
(using the ScrollBar() function) and set their ranges to more appropriate values.

The name, resizeMode, and flags arguments are identical to those declared in the BView
class and are passed unchanged to the BView constructor.

See also: the BView constructor

~BScrollView()

virtual ~BScrollView(void)

Does nothing.

Member Functions

Draw()

virtual void Draw(BRect updateRect)

Draws a one-pixel wide black border around the target view and scroll views, provided
the bordered flag wasn’t set to FALSE in the BScrollView constructor.

See also: the BScrollView constructor, Draw() in the BView class

ScrollBar()

BScrollBar *ScrollBar(orientation posture) const

Returns the horizontal scroll bar if posture is HORIZONTAL and the vertical scroll bar if
posture is VERTICAL. If the BScrollView doesn’t contain a scroll bar with the requested
orientation, this function returns NULL.

See also: the BScrollBar class

Overview

DR3 The Interface Kit – 173

BSeparatorItem

Derived from: public BMenuItem

Declared in: <interface/MenuItem.h>

Overview

A BSeparatorItem is a menu item that serves only to separate the items that precede it in
the menu list from the items that follow it. It’s drawn as a horizontal line across the
menu from the left border to the right. Although it has an indexed position in the menu
list just like other items, it doesn’t have a label, can’t be selected, posts no messages, and
is permanently disabled.

Since the separator is drawn horizontally, it’s assumed that items in the menu are
arranged in a column, as they are by default. It’s inappropriate to use a separator in a
menu bar or another menu where the items are arranged in a row.

A separator can be added to a BMenu by constructing an object of this class and calling
BMenu’s AddItem() function. As a shorthand, you can simply call BMenu’s
AddSeparatorItem() function, which constructs the object for you and adds it to the list.

A BSeparatorItem that’s returned to you (by BMenu’s ItemAt() function, for example)
will always respond NULL to Message(), Command(), and Submenu() queries and
FALSE to IsEnabled().

See also: AddSeparatorItem() in the BMenu class

Constructor and Destructor

BSeparatorItem()

BSeparatorItem(void)

Initializes the BSeparatorItem and disables it.

~BSeparatorItem()

virtual ~BSeparatorItem(void)

Does nothing.

Member Functions

174 – The Interface Kit DR3

Member Functions

Draw()

protected:
virtual void Draw(void)

Draws the item as a horizontal line across the width of the menu.

GetContentSize()

protected:
virtual void GetContentSize(float *width, float *height)

Provides a minimal size for the item so that it won’t constrain the size of the menu.

SetEnabled()

virtual void SetEnabled(bool flag)

Does nothing. A BSeparatorItem is disabled when it’s constructed and must stay that
way.

Overview

DR3 The Interface Kit – 175

BStringView

Derived from: public BView

Declared in: <interface/StringView.h>

Overview

A BStringView object draws a static character string. The user can’t select the string or
edit it; a BStringView doesn’t respond to events. An instance of this class can be used to
draw a label or other text that simply delivers a message of some kind to the user. Use a
BTextView object for selectable and editable text.

You can also draw strings by calling BView’s DrawString() function. However,
assigning a string to a BStringView object locates it in the view hierarchy. The string
will be updated automatically, just like other views. And, by setting the resizing mode
of the object, you can make sure that it will be positioned properly when the window or
the view it’s in (the parent of the BStringView) is resized.

Constructor and Destructor

BStringView()

BStringView(BRect frame, const char *name, const char *text,
ulong resizingMode = FOLLOW_LEFT_TOP,
ulong flags = WILL_DRAW)

Initializes the BStringView by assigning it a text string. The frame rectangle needs to be
large enough to display the entire string in the current font. The string is drawn at the
bottom of the frame rectangle and, by default, is aligned to the left side. A different
horizontal alignment can be set by calling SetAlignment().

The frame, name, resizingMode, and flags arguments are the same as those declared for
the BView class. They’re passed unchanged to the BView constructor.

~BStringView()

virtual ~BStringView(void)

Frees the text string.

Member Functions

176 – The Interface Kit DR3

Member Functions

Alignment() see SetAlignment()

AttachedToWindow()

virtual void AttachedToWindow(void)

Sets the default font for drawing the label to the 9-point “geneva” bitmap font. This
function is called by the Interface Kit; you shouldn’t call it yourself. However, you can
reimplement it to set the front color or a different font for drawing the string—or simply
to take notice when the BStringView becomes part of a window’s view hierarchy.

See also: AttachedToWindow() in the BView class

Draw()

virtual void Draw(BRect updateRect)

Draws the string along the bottom of the BStringView’s frame rectangle in the current
front color.

See also: Draw() in the BView class

SetAlignment(), Alignment()

void SetAlignment(alignment flag)

inline alignment Alignment(void) const

These functions align the string within the BStringView’s frame rectangle and return the
current alignment. The alignment flag can be:

ALIGN_LEFT The string is aligned at the left side of the frame
rectangle.

ALIGN_RIGHT The string is aligned at the right side of the frame
rectangle.

ALIGN_CENTER The string is aligned so that the center of the string falls
midway between the left and right sides of the frame
rectangle.

The default is ALIGN_LEFT.

Member Functions

DR3 The Interface Kit – 177

SetText(), Text()

void SetText(const char *string)

inline const char *Text(void) const

These functions set and return the text string that the BStringView draws. SetText()
frees the previous string and copies string to replace it. Text() returns the null-
terminated string.

Member Functions

178 – The Interface Kit DR3

Overview

DR3 The Interface Kit – 179

BTextView

Derived from: public BView

Declared in: <interface/TextView.h>

Overview

The BTextView class defines a view that displays text on-screen and supports a standard
user interface for entering, selecting, and editing text from the keyboard and mouse. It
also supports the principal editing commands—“Cut,” “Copy,” “Paste,” “Delete,” and
“Select All.”

BTextView objects are suitable for displaying small amounts of text in the user interface
and for creating textual data in ASCII format. Full-scale text editors and word
processors will need to define their own objects to handle richer data formats.

A BTextView displays all its text in a single font, the font that it inherits as a BView
graphics parameter. Multiple fonts are not supported. Paragraph properties—such as
alignment, tab widths, and interline spacing—are similarly uniform for all text
displayed within the view.

Resizing

A BTextView can be made to resize itself to exactly fit the text that the user enters. This
is sometimes appropriate for small one-line text fields. See the MakeResizable()
function.

Shortcuts and Menu Items

When a BTextView is the focus view for its window, it responds to these standard
keyboard shortcuts for cutting, copying, and pasting text:

• Command-x to cut text and copy it to the clipboard,
• Command-c to copy text without cutting it, and
• Command-v to paste text taken from the clipboard.

These shortcuts work even in the absence of “Cut,” “Copy,” and “Paste” menu items;
they’re implemented by the BWindow for any view that might be the focus view. All the
focus view has to do is cooperate, as a BTextView does, by handling the messages the
shortcuts generate.

Overview

180 – The Interface Kit DR3

The only trick is to set up menu items that are compatible with the shortcuts. Follow
these guidelines if you put a menu with editing commands in a window that has a
BTextView:

• Create “Cut”, “Copy”, and “Paste” menu items and assign them the Command-x,
Command-c, and Command-v shortcuts.

• Assign the items model CUT, COPY and PASTE messages. These messages don’t
need to contain any information (other than a what data member initialized to the
proper constant).

• Target the messages to the BWindow’s focus view (or directly to the BTextView).
No changes to the BTextView are necessary. When it gets these messages, the
BTextView calls its Cut(), Copy(), and Paste() functions.

You can also set up menu items that trigger calls to other BTextView editing and layout
functions. Simply create menu items like “Select All” or “Double Space” that are
targeted to the focus view of the window where the BTextView is located, or to the
BTextView itself. The model messages assigned to these items can be structured with
whatever command constants and data entries you wish; the BTextView class imposes
no constraints.

Then, in a class derived from BTextView, implement a MessageReceived() function
that responds to messages posted from the menu items by calling BTextView functions
like SelectAll() and SetSpacing(). For example:

void myText::MessageReceived(BMessage *message)
{
 switch (message->what) {
 case SELECT_ALL:
 SelectAll();
 break;
 case SINGLE_SPACE:
 SetSpacing(1);
 break;
 case DOUBLE_SPACE:
 SetSpacing(2);
 break;
 . . .
 default:
 BTextView::MessageReceived(message);
 break;
 }
}

The MessageReceived() function you implement should be sure to call BTextView’s
version of the function, which already handles CUT, COPY, and PASTE messages.

Hook Functions

DR3 The Interface Kit – 181

Hook Functions

AcceptsChar() Can be implemented to preview the characters the user
types and either accept or reject them before they’re
added to the display.

BreaksAtChar() Breaks word selection on spaces, tabs, and other invisible
characters, permitting all adjacent visible characters to be
selected when the user double-clicks a word. This
function can be augmented to break word selection on
other characters in addition to the invisible ones.

Constructor and Destructor

BTextView()

BTextView(BRect frame, const char *name, BRect textRect,
ulong resizingMode, ulong flags)

Initializes the BTextView to the frame rectangle, stated in its eventual parent’s
coordinate system, assigns it an identifying name, sets its resizing behavior to
resizingMode and its drawing behavior with flags. These four arguments—frame, name,
resizingMode, and flags—are identical to those declared for the BView class and are
passed unchanged to the BView constructor.

The text rectangle, textRect, is stated in the BTextView’s coordinate system. It
determines where text in placed within the view’s bounds rectangle:

• The first line of text is placed at the top of the text rectangle. As additional lines
of text are entered into the view, the text grows downward and may actually
extend beyond the bottom of the rectangle.

• The left and right sides of the text rectangle determine where lines of text are
placed within the view. Lines can be aligned to either side of the rectangle, or
they can be centered between the two sides. See the SetAlignment() function.

• When lines wrap on word boundaries, the width of the text rectangle determines
the maximum length of a line; each line of text can be as long as the rectangle is
wide. When word wrapping isn’t turned on, lines can extend beyond the
boundaries of the text rectangle. See the SetWordWrap() function.

The bottom of the text rectangle is ignored; it doesn’t limit the amount of text the view
can contain. The text can be limited by the number of characters, but not by the number
of lines.

Member Functions

182 – The Interface Kit DR3

The constructor establishes the following default properties for a new BTextView:

• The text is left-aligned and single-spaced.
• The tab width is 44.0 coordinate units.
• Automatic indenting and word wrapping are turned off.
• The text is selectable and editable.
• All characters the user may type are acceptable.

A BTextView isn’t fully initialized until it’s assigned to a window and it receives an
AttachedToWindow() notification.

See also: AttachedToWindow(), the BView constructor

~BTextView()

virtual ~BTextView(void)

Frees the memory the BTextView allocated to hold the text and to store information
about it.

Member Functions

AcceptsChar()

virtual bool AcceptsChar(ulong aChar) const

Implemented by derived classes to return TRUE if aChar designates a character that the
BTextView can add to its text, and FALSE if not. By returning FALSE, this function
prevents the character from being displayed or retained by the object.

AcceptsChar() is called for every character the user types (including those, like
BACKSPACE and RIGHT_ARROW, that are used for editing the text). The default version
of this function always returns TRUE, but it can be overridden in a derived class to restrict
the text the user can enter. For example, a BTextView might reject uppercase letters, or
permit only numbers, or allow only those characters that are valid in a pathname.

Sometimes, a character will be meaningful and trigger a response of some kind, even
though it can’t be displayed. For example, a TAB (0x09) might be rejected as a character
to display, and instead shift the selection to another text field. Similarly, a BTextView
that has room to display only a single line of text might return FALSE for the newline
character (ENTER, 0x0a), yet take the occasion to simulate a click on a button.

When rejecting a character outright (not using it to take some other action), an
application has an obligation to explain to the user why the character is unacceptable,
perhaps by displaying an alert panel or dialog box.

Member Functions

DR3 The Interface Kit – 183

As an alternative to implementing an AcceptsChar() function, you can simply inform
the BTextView at the outset that certain characters should not be allowed. Call
DisallowChar() when setting up the BTextView to tell it that certain characters won’t be
acceptable.

See also: KeyDown(), DisallowChar()

Alignment() see SetAlignment()

AllowChar() see DisallowChar()

AttachedToWindow()

virtual void AttachedToWindow(void)

Completes the initialization of the BTextView object after it becomes attached to a
window. This function sets up the object so that it can correctly format text and display
it. It allocates memory for the text and makes sure that all properties that were
previously set—for example, word wrapping, tab width, and alignment—are correctly
reflected in the display on-screen. In addition, it calls SetFontName() and SetFontSize()
to set the font to the 9-point “geneva” bitmap font (no rotation, 90° shear).

This function is called for you when the BTextView becomes part a window’s view
hierarchy; you shouldn’t call it yourself, though you can override it to set a different
default font and do other graphics initialization. For more information on when it’s
called, see the BView class.

An AttachedToWindow() function that’s implemented by a derived class should begin
by incorporating the BTextView version:

void MyText::AttachedToWindow()
{
 BTextView::AttachedToWindow()
 . . .
}

If it doesn’t, the BTextView won’t be able to properly display the text.

See also: AttachedToWindow() in the BView class, SetFontName()

BreaksAtChar()

virtual bool BreaksAtChar(ulong aChar) const

Implemented by derived classes to return TRUE if the aChar character can break word
selection, and FALSE if it cannot. The BTextView class calls this function when the user
selects a word by double-clicking it. A return of TRUE means that the character breaks

Member Functions

184 – The Interface Kit DR3

the selection—it cannot be selected as part of the word. A return of FALSE means that the
character will be included in the selected word.

By default, BreaksAtChar() returns TRUE if the character is a SPACE (0x20), a TAB (0x09),
a newline (ENTER, 0x0a), or some other character with an ASCII value less than that of a
space, and FALSE otherwise.

It can be reimplemented to add hyphens to the list of characters that break word
selection, as follows:

bool MyTextView::BreaksAtChar(ulong someChar)
{
 if (someChar == '-')
 return TRUE;
 return BTextView::BreaksAtChar(someChar);
}

See also: Text()

Copy()

virtual void Copy(BClipboard *clipboard)

Copies the current selection to the clipboard. The clipboard argument is identical to the
global be_clipboard object.

See also: Paste(), Cut()

CountLines() see GoToLine()

CurrentLine() see GoToLine()

Cut()

virtual void Cut(BClipboard *clipboard)

Copies the current selection to the clipboard, deletes it from the BTextView’s text, and
removes it from the display. The clipboard argument is identical to the global
be_clipboard object.

See also: Paste(), Copy()

Member Functions

DR3 The Interface Kit – 185

Delete()

void Delete(void)

Deletes the current selection from the BTextView’s text and removes it from the display,
without copying it to the clipboard.

See also: Cut()

DisallowChar(), AllowChar()

void DisallowChar(ulong aChar)

void AllowChar(ulong aChar)

These functions inform the BTextView whether the user should be allowed to enter
aChar into the text. By default, all characters are allowed. Call DisallowChar() for each
character you want to prevent the BTextView from accepting, preferably when first
setting up the object.

AllowChar() reverses the effect of DisallowChar().

Alternatively, and for more control over the context in which characters are accepted or
rejected, you can implement an AcceptsChar() function for the BTextView.
AcceptsChar() is called for each key-down event that’s reported to the object.

See also: AcceptsChar()

DoesAutoindent() see SetAutoindent()

DoesWordWrap() see SetWordWrap()

Draw()

virtual void Draw(BRect updateRect)

Draws the text on-screen. The Interface Kit calls this function for you whenever the text
display needs to be updated—for example, whenever the user edits the text, enters new
characters, or scrolls the contents of the BTextView.

See also: Draw() in the BView class

GetSelection()

void GetSelection(long *start, long *finish)

Provides the current selection by writing the offset before the first selected character
into the variable referred to by start and the offset after the last selected character into

Member Functions

186 – The Interface Kit DR3

the variable referred to by finish. If no characters are selected, both offsets will record
the position of the current insertion point.

The offsets designate positions between characters. The position at the beginning of the
text is offset 0, the position between the first and second characters is offset 1, and so on.
If the 175th through the 202nd characters were selected, the start offset would be 174
and the finish offset would be 202.

If the text isn’t selectable, both offsets will be 0.

See also: Select()

GoToLine(), CountLines(), CurrentLine()

void GoToLine(long index)

long CurrentLine(void)

inline long CountLines(void)

GoToLine() moves the insertion point to the beginning of the line at index. The first line
has an index of 0, the second line an index of 1, and so on. If the index is out-of-range,
the insertion point is moved to the beginning of the line with the nearest in-range
index—that is, to either the first or the last line.

CurrentLine() returns the index of the line where the first character of the selection—or
the character following the insertion point—is currently located.

CountLines() returns how many lines of text the BTextView currently contains.

Like other functions that change the selection, GoToLine() doesn’t automatically scroll
the display to make the new selection visible. Call ScrollToSelection() to be sure that the
user can see the start of the selection.

See also: ScrollToSelection()

Highlight()

void Highlight(long start, long finish)

Highlights the characters from start through finish, where start and finish are the same
sort of offsets into the text array as are passed to Select().

Highlight() is the function that the BTextView calls to highlight the current selection.
You don’t need to call it yourself for this purpose. It’s in the public API just in case you
may need to highlight a range of text in some other circumstance.

See also: Select()

Member Functions

DR3 The Interface Kit – 187

IndexAtPoint()

long IndexAtPoint(BPoint point) const
long IndexAtPoint(float x, float y) const

Returns the index of the character displayed closest to point—or (x, y)—in the
BTextView’s coordinate system. The first character in the text array is at index 0.

If the point falls after the last line of text, the return value is the index of the last
character in the last line. If the point falls before the first line of text, or if the
BTextView doesn’t contain any text, the return value is 0.

Insert()

void Insert(const char *text, long length)

void Insert(const char *text)

Inserts length characters of text—or if a length isn’t specified, all the characters of the
text string up to the null character that terminates it—at the beginning of the current
selection. The current selection is not deleted and the insertion is not selected.

See also: SetText()

IsEditable() see MakeEditable()

IsSelectable() see MakeSelectable()

KeyDown()

virtual void KeyDown(ulong aChar)

Enters text at the current selection in response to the user’s typing. This function is
called from the window’s message loop for every report of a key-down event—once for
every character the user types. However, it does nothing unless the BTextView is the
focus view and the text it contains is editable.

If aChar is one of the arrow keys (UP_ARROW, LEFT_ARROW, DOWN_ARROW, or
RIGHT_ARROW), KeyDown() moves the insertion point in the appropriate direction. If
aChar is the BACKSPACE character, it deletes the current selection (or one character at
the current insertion point). Otherwise, it checks whether the character was registered
as unacceptable (by DisallowChar()) and it calls the AcceptsChar() hook function to
give the application a chance to reject the character or handle it in some other way. If
the character isn’t disallowed and AcceptsChar() returns TRUE, it’s entered into the text
and displayed.

See also: KeyDown() in the BView class, AcceptsChar(), DisallowChar()

Member Functions

188 – The Interface Kit DR3

LineWidth()

float LineWidth(long index = 0) const

Returns the width of the line at index—or, if no index is given, the width of the first line.
The value returned is the sum of the widths (in coordinate units) of all the characters in
the line, from the first through the last, including tabs and spaces.

Line indices begin at 0.

If the index passed is out-of-range, it’s reinterpreted to be the nearest in-range index—
that is, as the index to the first or the last line.

MakeEditable(), IsEditable()

void MakeEditable(bool flag = TRUE)

bool IsEditable(void) const

The first of these functions sets whether the user can edit the text displayed by the
BTextView; the second returns whether or not the text is currently editable. Text is
editable by default.

To edit text, the user must be able to select it. Therefore, when MakeEditable() is called
with an argument of TRUE (or with no argument), it makes the text both editable and
selectable. Similarly, when IsEditable() returns TRUE, the text is selectable as well as
editable; IsSelectable() will also return TRUE.

A value of FALSE means that the text can’t be edited, but implies nothing about whether
or not it can be selected.

See also: MakeSelectable()

MakeFocus()

virtual void MakeFocus(bool flag = TRUE)

Overrides the BView version of MakeFocus() to highlight the current selection when the
BTextView becomes the focus view (when flag is TRUE) and to unhighlight it when the
BTextView no longer is the focus view (when flag is FALSE). However, the current
selection is highlighted only if the BTextView’s window is the current active window.

This function is called for you whenever the user’s actions make the BTextView become
the focus view, or force it to give up that status.

See also: MakeFocus() in the BView class, MouseDown()

Member Functions

DR3 The Interface Kit – 189

MakeResizable()

void MakeResizable(BView *containerView)

Makes the BTextView’s frame rectangle and text rectangle automatically grow and
shrink to exactly enclose all the characters entered by the user. The containerView is a
view that should be resized with the BTextView; typically it’s a view that draws a border
around the text (like a BScrollView object) and is the parent of the BTextView. This
function won’t work without a container view.

MakeResizable() is an alternative to the automatic resizing behavior provided in the
BView class. It triggers resizing on the user’s entry of text, not on a change in the parent
view’s size. The two schemes are incompatible; the BTextView and the container view
should not automatically resize themselves when their parents are resized.

< This function currently requires the text to be either left aligned or center aligned; it
doesn’t work for text that’s right aligned. >

See also: SetAlignment()

MakeSelectable(), IsSelectable()

void MakeSelectable(bool flag = TRUE)

bool IsSelectable(void) const

The first of these functions sets whether it’s possible for the user to select text displayed
by the BTextView; the second returns whether or not the text is currently selectable.
Text is selectable by default.

When text is selectable but not editable, the user can select one or more characters to
copy to the clipboard, but can’t position the insertion point (an empty selection), enter
characters from the keyboard, or paste new text into the view.

Since the user must be able to select text to edit it, calling MakeSelectable() with an
argument of FALSE causes the text to become uneditable as well as unselectable.
Similarly, if IsSelectable() returns FALSE, the user can neither select nor edit the text;
IsEditable() will also return FALSE.

A value of TRUE means that the text is selectable, but says nothing about whether or not
it’s also editable.

See also: MakeEditable()

MessageDropped()

virtual bool MessageDropped(BMessage *message, BPoint point)

Takes textual data from the dropped message and pastes it into the text. The text
replaces the current selection, or is placed at the site of the current insertion point.

Member Functions

190 – The Interface Kit DR3

This function first looks in the BMessage for an entry named “text” registered as
ASCII_TYPE. Failing that, it looks for a single character named “char” registered as
LONG_TYPE. If successful in finding either entry, it adds the data to the text, updates the
display on-screen, and returns TRUE. If unsuccessful, it returns FALSE.

See also: AcceptsChar()

MessageReceived()

virtual void MessageReceived(BMessage *message)

Overrides the BReceiver function to handle CUT, COPY, and PASTE messages, by calling
the Cut(), Copy(), and Paste() virtual functions.

For the BTextView to get these messages, “Cut”, “Copy”, and “Paste” menu items
should be:

• Assigned model messages with CUT, COPY, and PASTE as their what data
members, and

• Targeted to the BTextView, or to the current focus view in the window that
displays the BTextView.

The BTextView, through this function, takes care of the rest.

To inherit this functionality, MessageReceived() functions implemented by derived
classes should be sure to call the BTextView version.

See also: SetMessage() and SetTarget() in the BMenuItem class

MouseDown()

virtual void MouseDown(BPoint point)

Selects text and positions the insertion point in response to the user’s mouse actions. If
the BTextView isn’t already the focus view for its window, this function calls
MakeFocus() to make it the focus view.

MouseDown() is called for each mouse-down event that occurs inside the BTextView’s
frame rectangle.

See also: MouseDown() and MakeFocus() in the BView class

Member Functions

DR3 The Interface Kit – 191

Paste()

virtual void Paste(BClipboard *clipboard)

Takes textual data from the clipboard and pastes it into the text. The new text replaces
the current selection, or is placed at the site of the current insertion point.

The clipboard argument is identical to the global be_clipboard object.

See also: Cut(), Copy()

Pulse()

virtual void Pulse(void)

Turns the caret marking the current insertion point on and off when the BTextView is the
focus view in the active window. Pulse() is called by the system at regular intervals.

This function is first declared in the BView class.

See also: Pulse() in the BView class

ScrollToSelection()

void ScrollToSelection(void)

Scrolls the text so that the beginning of the current selection is within the visible region
of the view, provided that the BTextView is equipped with a scroll bar that permits
scrolling in the required direction (horizontal or vertical).

See also: ScrollBy() in the BView class

Select()

void Select(long start, long finish)

Selects the characters from start up to finish, where start and finish are offsets into the
BTextView’s text. The offsets designate positions between characters. For example,

Select(0, 2);

selects the first two characters of text,

Select(17, 18);

selects the eighteenth character, and

Select(0, TextLength());

Member Functions

192 – The Interface Kit DR3

selects the entire text just as the SelectAll() function does. If start and finish are the
same, the selection will be empty (an insertion point).

Normally, the selection is changed by the user. This function provides a way to change
it programmatically.

If the BTextView is the current focus view in the active window, Select() highlights the
new selection (or displays a blinking caret at the insertion point). However, it doesn’t
automatically scroll the contents of the BTextView to make the new selection visible.
Call ScrollToSelection() to be sure that the user can see the start of the selection.

See also: Text(), GetSelection(), ScrollToSelection(), GoToLine(), MouseDown()

SelectAll()

void SelectAll(void)

Selects the entire text of the BTextView, and highlights it if the BTextView is the current
focus view in the active window.

See also: Select()

SetAlignment(), Alignment()

void SetAlignment(alignment where)

alignment Alignment(void) const

These functions set the way text is aligned within the text rectangle and return the
current alignment. Three settings are possible:

ALIGN_LEFT Each line is aligned at the left boundary of the text
rectangle.

ALIGN_RIGHT Each line is aligned at the right boundary of the text
rectangle.

ALIGN_CENTER Each line is centered between the left and right
boundaries of the text rectangle.

The default is ALIGN_LEFT.

SetAutoindent(), DoesAutoindent()

void SetAutoindent(bool flag)

bool DoesAutoindent(void) const

These functions set and return whether a new line of text is automatically indented the
same as the preceding line. When set to TRUE and the user types Return at the end of a

Member Functions

DR3 The Interface Kit – 193

line that begins with tabs or spaces, the new line will automatically indent past those
tabs and spaces to the position of the first visible character.

The default value is FALSE.

SetFontName(), SetFontSize(), SetFontRotation(), SetFontShear(),
SetFontSymbolSet()

virtual void SetFontName(const char *name)

virtual void SetFontSize(float points)

virtual void SetFontRotation(float degrees)

virtual void SetFontShear(float angle)

virtual void SetFontSymbolSet(const char *name)

These functions override their BView counterparts to redisplay the text in the new font,
and to prevent the text displayed by a BTextView object from being rotated.

Font rotation is disabled; the BTextView version of SetFontRotation() does nothing. The
other four functions invoke their BView counterparts to change the font, then make sure
the entire text is rewrapped and redisplayed in the new font.

SetFontName() and SetFontSize() are called by AttachedToWindow() to set the
BTextView’s default font to 9-point “geneva”.

See also: SetFontName() in the BView class

SetMaxChars()

void SetMaxChars(long max)

Sets the maximum number of characters that the BTextView can accept. The default is
the maximum number of characters that can be designated by a long integer, a number
sufficiently large to accommodate all uses of a BTextView. Use this function only if you
need to restrict the number of characters that the user can enter in a text field.

SetSpacing(), Spacing()

void SetSpacing(long spacing)

long Spacing(void) const

These functions set and return the spacing between lines of text. A value of 1 indicates
single spacing, 2 double spacing, 3 triple spacing, and so on.

Single spacing is the default.

Member Functions

194 – The Interface Kit DR3

SetTabWidth()

void SetTabWidth(float width)

Sets the distance between tab stops to width coordinate units. All tabs have a uniform
width.

The default tab width is 44.0.

SetText()

void SetText(const char *text, long length)

void SetText(const char *text)

Removes any text currently in the BTextView and copies length characters of text to
replace it—or all the characters in the text string, up to the null character, if a length isn’t
specified. If text is NULL or length is 0, this function empties the BTextView. Otherwise,
it copies the required number of text characters passed to it.

This function is typically used to set the text initially displayed in the view. If the
BTextView is attached to a window, it’s updated to show its new contents.

See also: Text(), TextLength()

SetTextRect(), TextRect()

void SetTextRect(BRect rect)

inline BRect TextRect(void)

SetTextRect() makes rect the BTextView’s text rectangle—the rectangle that locates
where text is placed within the view. This replaces the text rectangle originally set in the
BTextView constructor. The layout of the text is recalculated to fit the new rectangle,
and the text is redisplayed.

TextRect() returns the current text rectangle.

See also: the BTextView constructor

SetWordWrap(), DoesWordWrap()

void SetWordWrap(bool flag)

bool DoesWordWrap(void) const

These functions set and return whether the BTextView wraps lines on word boundaries,
dropping entire words that don’t fit at the end of a line to the next line. Words break on
tabs, spaces, and other invisible characters; all adjacent visible characters wrap together.

Member Functions

DR3 The Interface Kit – 195

By default, word wrapping is turned off (DoesWordWrap() returns FALSE). Lines break
only on a newline character (where the user types return).

See also: SetTextRect()

Spacing() see SetSpacing()

Text()

const char *Text(void) const

Returns a pointer to the text contained in the BTextView, or NULL if it’s empty. The
returned pointer can be used to read the text, but not to alter it (use SetText(), Insert(),
Delete(), and other BTextView functions to do that). The pointer may no longer be valid
after the user or the program next changes the text.

This function returns the text as a null-terminated string. However, once the text is
changed, the string will no longer be null-terminated.

See also: TextLength()

TextLength()

long TextLength(void) const

Returns the number of characters the BTextView currently contains—the number of
characters that Text() returns (not counting the null terminator).

See also: Text(), SetMaxChars()

TextRect() see SetTextRect()

WindowActivated()

virtual void WindowActivated(bool flag)

Highlights the current selection when the BTextView’s window becomes the active
window (when flag is TRUE)—provided that the BTextView is the current focus view—
and removes the highlighting when the window ceases to be the active window (when
flag is FALSE).

If the current selection is empty (if it’s an insertion point), it’s highlighted by turning the
caret on and off (blinking it).

Member Functions

196 – The Interface Kit DR3

The Interface Kit calls this function for you whenever the BTextView’s window
becomes the active window or it loses that status.

See also: WindowActivated() in the BView class, MakeFocus()

Overview

DR3 The Interface Kit – 197

BView

Derived from: public BObject

Declared in: <interface/View.h>

Overview

BView objects are the agents of drawing and event handling within windows. Each
object sets up and takes responsibility for a particular view, a rectangular area that’s
associated with at most one window at a time. The object draws within the view
rectangle and responds to reports of events elicited by the images drawn.

Classes derived from BView implement the actual functions that draw and handle
events; BView merely provides the framework. For example, a BTextView object draws
and edits text in response to the user’s activity on the keyboard and mouse. A BButton
draws the image of a button on-screen and responds when the button is clicked.
BTextView and BButton inherit from the BView class—as do most classes in the
Interface Kit.

The following Kit classes derive, directly or indirectly, from BView:

BMenu BControl BScrollBar
BMenuBar BButton BScrollView
BPopUpMenu BCheckBox BStringView
BListView BRadioButton BTextView

BBox

Serious applications will need to define their own classes derived from BView.

Views and Windows

For a BView to do its work, you must attach it to a window. The views in a window are
arranged in a hierarchy—there can be views within views—with those that are most
directly responsible for drawing and event handling located at the terminal branches of
the hierarchy and those that contain and organize other views situated closer to its trunk
and root. A BView begins life unattached. You can add it to a hierarchy by calling the
AddChild() function of the BWindow, or of another BView.

Overview

198 – The Interface Kit DR3

Within the hierarchy, a BView object plays two roles:

• It’s a BReceiver for messages delivered to the window thread. BViews implement
the functions that respond to the most common system messages—including
those that report keyboard and mouse events. They can also be targeted to receive
application-defined messages that affect what they view displays.

• It’s an agent for drawing. Adding a BView to a window gives it an independent
graphics environment. A BView draws on the initiative of the BWindow and the
Application Server, whenever they determine that the appearance of any part of
the view rectangle needs to be “updated.” It also draws on its own initiative in
response to events.

The relationship of BViews to BWindows and the framework for drawing and handling
events were discussed in the introduction to this chapter. The concepts and terminology
presented there are assumed in this class description. See especially “BView Objects”
on page 11, “The View Hierarchy” on page 13, “Drawing” beginning on page 18, and
“Handling Events” beginning on page 40.

BViews can also be called upon to create bitmap images. See the BBitmap class for
details.

Drag and Drop

The BView class supports a drag-and-drop user interface. The user can transfer a parcel
of information from one place to another by dragging an image from a source view and
dropping it on a destination view—perhaps a view in a different window or even a
different application.

A source BView initiates dragging by calling DragMessage() from within its
MouseDown() function. The BView bundles all information relevant to the dragging
session into a BMessage object and passes it to DragMessage(). It also passes an image
to represent the data package on-screen.

The Application Server then takes charge of the BMessage object and animates the
image as the user drags it on-screen. As the image moves across the screen, the views it
passes over are informed with MouseMoved() function calls. These notifications give
views a chance to show the user whether or not they’re willing to accept the message
being dragged. When the user releases the mouse button, dropping the dragged
message, the destination BView’s MessageDropped() virtual function is called. The
dragged BMessage is passed to the BView as a MessageDropped() argument.

Aside from creating a BMessage object and passing it to DragMessage(), or
implementing MouseMoved() and MessageDropped() functions to handle any
messages that come its way, there’s nothing an application needs to do to support a drag-
and-drop user interface. The bulk of the work is done by the Application Server and
Interface Kit.

Overview

DR3 The Interface Kit – 199

Locking the Window

If a BView is attached to a window, any operation that affects the view might also affect
the window and the BView’s shadow counterpart in the Application Server. For this
reason, any code that calls a BView function should first lock the window—so that one
thread can’t modify essential data structures while another thread is using them. A
window can be locked by only one thread at a time.

By default, before they do anything else, almost all BView functions check to be sure
the caller has the window locked. If the window isn’t properly locked, they print
warning messages and fail.

This check should help you develop an application that correctly regulates access to
windows and views. However, it adds a certain amount of time to each function call.
Once your application has been debugged and is ready to ship, you can turn the check
off by calling BWindow’s SetDiscipline() function and passing it an argument of FALSE.
The discipline flag is separately set for each window.

BView functions can require the window to be locked only if the view has a window to
lock; the requirement can’t be enforced if the BView isn’t attached to a window.
However, as discussed under “Views and the Server” on page 30 of the introduction to
this chapter, many BView functions, including all those that depend on graphics
parameters, don’t work at all unless the view is attached—in which case the window
must be locked.

Whenever the system calls a BView function to notify it of something—whenever it
calls WindowActivated(), Draw(), MessageReceived() or another hook function—it
first makes sure that the window is locked. The application doesn’t have to explicitly
lock the window when responding to an update, an event message, or some other
notification. The window is already locked.

Derived Classes

When it comes time for a BView to draw, its Draw() virtual function is called
automatically. When it needs to respond to an event, a virtual function named after the
kind of event is called—MouseDown(), KeyDown(), MessageDropped(), and so on.
Classes derived from BView implement these hook functions to do the particular kind of
drawing and event handling characteristic of the derived class.

• Some classes derived from BView implement control devices—buttons, dials,
selection lists, check boxes, and so on—that translate user actions on the keyboard
and mouse into more explicit instructions for the application. In the Interface Kit,
BMenu, BListView, BButton, BCheckBox, and BRadioButton are examples of
control devices.

• Other BViews visually organize the display—for example, a view that draws a
border around and arranges other views, or one that splits a window into two or

Hook Functions

200 – The Interface Kit DR3

more resizable panels. The BBox, BScrollBar, and BScrollView classes fall into
this category.

• Some BViews implement highly organized displays the user can manipulate, such
as a game board or a scientific simulation.

• Perhaps the most important BViews are those that permit the user to create,
organize, and edit data. These views display the current selection and are the
focus of most user actions. They carry out the main work of an application.
BTextView is the only Interface Kit example of such a view.

Almost all the BView classes defined in the Interface Kit fall into the first two of these
groups. Control devices and organizational views can serve a variety of different kinds
of applications, and therefore can be implemented in a kit that’s common to all
applications

However, the BViews that will be central to most applications fall into the last two
groups. Of particular importance are the BViews that manage editable data.
Unfortunately, these are not views that can be easily implemented in a common kit. Just
as most applications devise their own data formats, most applications will need to define
their own data-handling views.

Nevertheless, the BView class structures and simplifies the task of developing
application-specific objects that draw in windows and interact with the user. It takes
care of the lower-level details and manages the view’s relationship to the window and
other views in the hierarchy. You should make yourself familiar with this class before
implementing you own application-specific BViews.

Hook Functions

AttachedToWindow() Can be implemented to finish initializing the BView once
it becomes part of a window’s view hierarchy.

Draw() Can be implemented to draw the view.

FrameMoved() Can be implemented to respond to a message notifying
the BView that it has moved in its parent’s coordinate
system.

FrameResized() Can be implemented to respond to a message informing
the BView that its frame rectangle has been resized.

KeyDown() Can be implemented to respond to a message reporting a
key-down event.

Constructor and Destructor

DR3 The Interface Kit – 201

MakeFocus() Makes the BView the focus view, or causes it to give up
being the focus view; can be augmented to take any
action the change in status may require.

MessageDropped() Can be implemented to accept or reject a BMessage
dropped on the view.

MouseDown() Can be implemented to respond to a message reporting a
mouse-down event.

MouseMoved() Can be implemented to respond to a notification that the
cursor has entered the view’s visible region, moved
within the visible region, or exited from the view.

Pulse() Can be implemented to do something at regular intervals.
This function is called repeatedly when no other
messages are pending.

WindowActivated() Can be implemented to respond to a notification that the
BView’s window has become the active window, or has
lost that status.

Constructor and Destructor

BView()

BView(BRect frame, const char *name, ulong resizingMode, ulong flags)

Sets up a view with the frame rectangle, which is specified in the coordinate system of
its eventual parent, and assigns the BView an identifying name, which can be NULL.

When it’s created, a BView doesn’t belong to a window and has no parent. It’s assigned
a parent by having another BView adopt it with the AddChild() function. If the other
view is in a window, the BView becomes part of that window’s view hierarchy. A
BView can be made a child of the window’s top view by calling BWindow’s version of
the AddChild() function.

When the BView gains a parent, the values in frame are interpreted in the parent’s
coordinate system. The sides of the view must be aligned on screen pixels. Therefore,
the frame rectangle should not contain coordinates with fractional values. Fractional
coordinates will be rounded to the nearest whole number.

Constructor and Destructor

202 – The Interface Kit DR3

The resizingMode flag determines the behavior of the view when its parent is resized. It
can be any one of the following constants:

FOLLOW_LEFT_TOP
FOLLOW_TOP_RIGHT

FOLLOW_RIGHT_BOTTOM
FOLLOW_LEFT_BOTTOM
FOLLOW_LEFT_TOP_RIGHT
FOLLOW_LEFT_TOP_BOTTOM
FOLLOW_TOP_RIGHT_BOTTOM
FOLLOW_LEFT_RIGHT_BOTTOM
FOLLOW_ALL
FOLLOW_NONE

Before resizing, each side of a view’s frame rectangle lies a certain distance from the
corresponding side of its parent. The constants above state which of those distances
should be maintained after the parent is resized—which of its parent’s sides the child
view should follow.

If a constant names opposite sides of the rectangle—left and right, or top and bottom—
the view will necessarily be resized in that dimension when its parent is. FOLLOW_ALL
means that the view will be resized in tandem with its parent, both horizontally and
vertically.

If a side is not mentioned, the distance between that side of the view and the
corresponding side of the parent is free to fluctuate. If the left side of a view doesn’t
follow the left side of its parent, or the top of the view doesn’t follow its parent’s top, the
view will be able to move within its parent’s coordinate system when the parent is
resized. FOLLOW_RIGHT_BOTTOM, for example, keeps a view from being resized, but
the view will move to follow the right bottom corner of its parent whenever the parent is
resized. FOLLOW_LEFT_TOP prevents a view from being resized and from being moved.

FOLLOW_NONE keeps the view at its absolute position on-screen; the parent view is
resized around it. (Nevertheless, because the parent is resized, the view may wind up
being moved in its parent’s coordinate system.)

Typically, a parent view is resized because the user resizes the window it’s in. When the
window is resized, the top view is too. Depending on how the resizingMode flag is set
for the top view’s children and for the descendants of its children, automatic resizing
can cascade down the view hierarchy. A view can also be resized programmatically by
the ResizeTo() and ResizeBy() functions.

The resizing mode can be changed after construction with the SetResizingMode()
function.

Constructor and Destructor

DR3 The Interface Kit – 203

The flags mask determines what kinds of notifications the BView will receive. It can be
any combination of these four constants:

WILL_DRAW Indicates that the BView has a Draw() function that
needs to be called on updates—the view isn’t
simply a container for other views; it does some
drawing on its own. If this flag isn’t set, the BView
won’t receive update notifications.

PULSE_NEEDED Indicates that the BView should receive Pulse()
notifications.

FRAME_EVENTS Indicates that the BView should receive
FrameResized() and FrameMoved() notifications
when its frame rectangle changes—typically as a
result of the automatic resizing behavior described
above. FrameResized() is called when the
dimensions of the view change; FrameMoved() is
called when the position of its left top corner in its
parent’s coordinate system changes.

FULL_UPDATE_ON_RESIZE Indicates that the entire view should be updated
when it’s resized. If this flag isn’t set, only the
portions that resizing adds to the view will be
included in the clipping region.

If none of these constants apply, flags can be NULL. The flags can be reset after
construction with the SetFlags() function.

See also: SetResizingMode(), SetFlags()

~BView()

virtual ~BView(void)

Removes the BView from the view hierarchy and ensures that each of its descendants is
also removed and destroyed.

Member Functions

204 – The Interface Kit DR3

Member Functions

AddChild()

virtual void AddChild(BView *aView)

Makes aView a child of the BView. If aView already has a parent, it’s removed from that
view and added to this one. A view can have only one parent.

If the BView is attached to a window, aView and all of its descendants become attached
to the same window. Each of them is notified of this change through an
AttachedToWindow() function call.

See also: AddChild() in the BWindow class, AttachedToWindow(), RemoveChild()

AddLine() see BeginLineArray()

AttachedToWindow()

virtual void AttachedToWindow(void)

Implemented by derived classes to complete the initialization of the BView when it’s
assigned to a window. A BView is assigned to a window when it, or one of its ancestors
in the view hierarchy, becomes a child of a view already attached to a window.

AttachedToWindow() is called immediately after the BView is formally made a part of
the window’s view hierarchy and after it has become known to the Application Server.
The Window() function can identify which BWindow the BView belongs to.

All of the BView’s children, if it has any, also become attached to the window and
receive their own AttachedToWindow() notifications. However, the BView receives the
notification before any of its children do and before they are recognized as part of the
window’s view hierarchy. This function should therefore do nothing that depends on
descendent views being attached to the window. However, it can depend on ancestor
views being attached.

Member Functions

DR3 The Interface Kit – 205

AttachedToWindow() is often implemented to set up a view’s graphics environment,
something that can’t be done before the view belongs to a window. For example:

void MyView::AttachedToWindow()
{
 BRect bounds = Bounds();

 MyBaseClass::AttachedToWindow();

 ScrollTo(0, dataRect.bottom - bounds.Height());
 SetFontName("chicago");
 SetFontSize(14);
 SetBackColor(192, 192, 192);
}

The default (BView) version of AttachedToWindow() is empty.

See also: AddChild(), Window()

BackColor() see SetFrontColor()

BeginLineArray(), AddLine(), EndLineArray()

void BeginLineArray(long count)

void AddLine(BPoint start, BPoint end, rgb_color color)

void EndLineArray(void)

These functions provide a more efficient way of drawing a large number of lines than
repeated calls to StrokeLine(). BeginLineArray() signals the beginning of a series of up
to count AddLine() calls; EndLineArray() signals the end of the series. Each AddLine()
call defines a line from the start point to the end point, associates it with a particular
color, and adds it to the array. The lines can each be a different color; they don’t have to
be contiguous. When EndLineArray() is called, all the lines are drawn—using the then
current pen size—in the order that they were added to the array.

These functions don’t change any graphics parameters. For example, they don’t move
the pen or change the current front and background colors. Parameter values that are in
effect when EndLineArray() is called are the ones used to draw the lines. The front and
background colors are ignored in favor of the color specified for each line.

The count passed to BeginLineArray() is an upper limit on the number of lines that can
be drawn. Keeping the count close to accurate and within reasonable bounds helps the
efficiency of the line-array mechanism. It’s a good idea to keep it less than 256; above
that number, memory requirements begin to impinge on performance.

See also: StrokeLine()

Member Functions

206 – The Interface Kit DR3

BeginRectTracking(), EndRectTracking()

void BeginRectTracking(BRect rect, track_style style = TRACK_WHOLE_RECT)

void EndRectTracking(void)

These functions instruct the Application Server to display a rectangular outline that will
track the movement of the cursor. BeginRectTracking() puts the rectangle on-screen and
initiates tracking; EndRectTracking() terminates tracking and removes the rectangle.
The initial rectangle, rect, is specified in the BView’s coordinate system.

This function supports two kinds of tracking, depending on the constant passed as the
style argument:

TRACK_WHOLE_RECT The whole rectangle moves with the cursor. Its
position changes, but its size remains fixed.

TRACK_RECT_CORNER The left top corner of the rectangle remains fixed
within the view while its right and bottom edges
move with the cursor.

Tracking is typically initiated from within a BView’s MouseDown() function and is
allowed to continue as long as a mouse button is held down. For example:

void MyView::MouseDown(BPoint point)
{
 ulong buttons;

 BRect rect(point, point);
 BeginRectTracking(rect, TRACK_RECT_CORNER);
 do {
 snooze(40);
 GetMouse(&point, &buttons);
 } while (buttons);
 EndRectTracking();

 rect.SetRightBottom(point);
 . . .
}

This example uses BeginRectTracking() to drag out a rectangle from the point reported
in the mouse-down event. It sets up a modal loop to periodically check on the state of
the mouse buttons. Tracking ends when the user releases all buttons. The right and
bottom sides of the rectangle are then updated from the cursor location last reported by
the GetMouse() function.

See also: ConvertToScreen(), GetMouse()

Member Functions

DR3 The Interface Kit – 207

Bounds()

BRect Bounds(void) const

Returns the BView’s bounds rectangle. If the BView is attached to a window, this
function gets the current bounds rectangle from the Application Server. If not, it assigns
the BView a default coordinate system and returns a bounds rectangle that’s the same
size and shape as the frame rectangle, but with the left and top sides at 0.

See also: Frame()

ChildAt(), CountChildren()

BView *ChildAt(long index) const

long CountChildren(void) const

< The first of these functions returns the child BView at index, or NULL if the BView has
no such child. The second returns the number of children the BView has. Indices begin
at 0 and the children are not arranged in any particular order. Don’t rely on these
functions as they may not remain in the API in this form >

ConvertToParent(), ConvertFromParent()

void ConvertToParent(BPoint *localPoint) const
void ConvertToParent(BRect *localRect) const

void ConvertFromParent(BPoint *parentPoint) const
void ConvertFromParent(BRect *parentRect) const

These functions convert points and rectangles to and from the coordinate system of the
BView’s parent. ConvertToParent() converts the point referred to by localPoint, or the
rectangle referred to by localRect, from the BView’s coordinate system to the coordinate
system of its parent. ConvertFromParent() does the opposite; it converts the point
referred to by parentPoint, or the rectangle referred to by parentRect, from the
coordinate system of the BView’s parent to the BView’s own coordinate system.

Both functions fail if the BView isn’t attached to a window.

See also: ConvertToScreen()

Member Functions

208 – The Interface Kit DR3

ConvertToScreen(), ConvertFromScreen()

void ConvertToScreen(BPoint *localPoint) const
void ConvertToScreen(BRect *localRect) const

void ConvertFromScreen(BPoint *screenPoint) const
void ConvertFromScreen(BRect *screenRect) const

These functions convert points and rectangles to and from the global screen coordinate
system. ConvertToScreen() converts the point referred to by localPoint, or the rectangle
referred to by localRect, from the BView’s coordinate system to the screen coordinate
system. ConvertFromScreen() makes the opposite conversion; it converts the point
referred to by screenPoint, or the rectangle referred to by screenRect, from the screen
coordinate system to the BView’s local coordinate system.

Neither function will work if the BView isn’t attached to a window.

See also: ConvertToScreen() in the BWindow class, ConvertToParent()

CopyBits()

void CopyBits(BRect source, BRect destination)

Copies the image displayed in the source rectangle to the destination rectangle, where
both rectangles lie within the view and are stated in the BView’s coordinate system.

If the two rectangles aren’t the same size, the source image is scaled to fit. If not all of
the destination rectangle lies within the BView’s visible region, the source image is
clipped rather than scaled.

If not all of the source rectangle lies within the BView’s visible region, only the visible
portion is copied. It’s mapped to the corresponding portion of the destination rectangle.
The BView is then invalidated so its Draw() function will be called to update the part of
the destination rectangle that can’t be filled with the source image.

CountChildren() see ChildAt()

DragMessage()

void DragMessage(BMessage *message, BBitmap *image, BPoint point)
void DragMessage(BMessage *message, BRect rect)

Initiates a drag-and-drop session. The first argument, message, is a BMessage object
that bundles the information that will be dragged and dropped on the destination view.
Once passed to DragMessage(), this object becomes the responsibility of—and will
eventually be freed by—the system. You shouldn’t free it yourself or try to access it
later. (Since data is copied when it’s added to a BMessage, only the copies are
automatically freed, not the originals).

Member Functions

DR3 The Interface Kit – 209

The second argument, image, represents the message on-screen; it’s the visible image
that the user drags. Like the BMessage, this BBitmap object becomes the responsibility
of the system; it will be freed when the message is dropped. If you want to keep the
image yourself, make a copy to pass to DragMessage(). The image isn’t dropped on the
destination BView; if you want the destination to have the image, you must add it to the
message as well as pass it as the image argument.

The final argument, point, locates the point within the image that’s aligned with the hot
spot of the cursor—that is, the point that’s aligned with the location passed to
MouseDown() or returned by GetMouse(). It’s stated within the coordinate system of
the source image and should lie somewhere within its bounds rectangle. The bounds
rectangle and coordinate system of a BBitmap are set when the object is constructed.

Alternatively, you can specify that an outline of a rectangle, rect, should be dragged
instead of an image. The rectangle is stated in the BView’s coordinate system.
(Therefore, a point argument isn’t needed to align it with the cursor.)

This function works only for BViews that are attached to a window.

See also: the BMessage class in the Application Kit, MessageDropped(), the BBitmap
class

Draw()

virtual void Draw(BRect updateRect)

Implemented by derived classes to draw the updateRect portion of the view. The update
rectangle is stated in the BView’s coordinate system. It’s the smallest rectangle that
encloses the current clipping region for the view.

Since the Application Server won’t render anything a BView draws outside its clipping
region, applications will be more efficient if they avoid sending drawing instructions to
the Server for images that don’t intersect with updateRect. For more efficiency and
precision, you can ask for the clipping region itself (by calling GetClippingRegion())
and confine drawing to images that intersect with it.

A BView’s Draw() function is called (as the result of an update message) whenever the
view needs to present itself on-screen. This may happen when:

• The window the view is in is first shown on-screen, or shown after being hidden
(see the BWindow version of the Hide() function).

• The view is made visible after being hidden (see BView’s Hide() function).

• Obscured parts of the view are revealed, as when a window is moved from in front
of the view or an image is dragged across the view.

• The view is resized.

• The contents of the view are scrolled (see ScrollBy()).

Member Functions

210 – The Interface Kit DR3

• A child view is added, removed, or resized.

• A rectangle has been invalidated that includes at least some of the view (see
Invalidate()).

• CopyBits() can’t completely fill a destination rectangle within the view.

See also: UpdateIfNeeded() in the BWindow class, Invalidate(), GetClippingRegion()

DrawBitmap()

void DrawBitmap(const BBitmap *image, BPoint point)
void DrawBitmap(const BBitmap *image, BRect destination)

void DrawBitmap(const BBitmap *image, BRect source, BRect destination)

Places a bitmap image in the view, either at point or within the destination rectangle.
These locations are specified in the BView’s coordinate system.

If a source rectangle is given, only that part of the bitmap image is drawn. Otherwise,
the entire bitmap is placed at the location specified. The source rectangle is stated in the
internal coordinates of the BBitmap object.

If the source image is bigger than the destination rectangle, it’s scaled to fit.

See also: “Drawing Modes” on page 27 in the chapter introduction, the BBitmap class

DrawChar()

void DrawChar(char c)

Draws the character c at the current pen position and moves the pen to a position
immediately to the right of the character. This function is equivalent to passing a string
of one character to DrawString().

See also: DrawString()

DrawingMode() see SetDrawingMode()

DrawString()

void DrawString(const char *string)

void DrawString(const char *string, long length)

Draws length characters of string—or, if the number of characters isn’t specified, all the
characters in the string, up to the null terminator (‘\0’).

Member Functions

DR3 The Interface Kit – 211

This function places the first character on a baseline that begins at the current pen
position and moves the pen to the baseline after the last character drawn. A series of
DrawString() calls will produce a continuous string. For example, these two lines of
code,

DrawString("tog");
DrawString("ether");

will produce the same result as this one:

DrawString("together");

See also: MovePenBy(), SetFontName()

EndLineArray() see BeginLineArray()

EndRectTracking() see BeginRectTracking()

FillArc() see StrokeArc()

FillEllipse() see StrokeEllipse()

FillPolygon() see StrokePolygon()

FillRect() see StrokeRect()

FillRoundRect() see StrokeRoundRect()

FillTriangle() see StrokeTriangle()

FindView()

BView *FindView(const char *name) const

Returns the BView identified by name, or NULL if the view can’t be found. Names are
assigned by the BView constructor and can be modified by the SetName() function.

FindView() begins the search by checking whether the BView’s name matches name. If
not, it continues to search down the view hierarchy, among the BView’s children and
more distant descendants. To search the entire view hierarchy, use the BWindow
version of this function.

See also: FindView() in the BWindow class, SetName()

Flags() see SetFlags()

Member Functions

212 – The Interface Kit DR3

Flush(), Sync()

void Flush(void) const

void Sync(void) const

These functions flush the window’s connection to the Application Server. If the BView
isn’t attached to a window, neither function has an effect.

For reasons of efficiency, the window’s connection to the Application Server is buffered.
Drawing instructions destined for the Server are placed in the buffer and dispatched as a
group when the buffer becomes full. Flushing empties the buffer, sending whatever
instructions happen to be in it to the Server, even if it’s not yet full.

The buffer is automatically flushed on every update. However, if you do any drawing
outside the update mechanism—in response to event messages, for example—you need
to explicitly flush the connection so that drawing instructions won’t languish in the
buffer while waiting for it to fill up or for the next update.

Flush() simply flushes the buffer and returns. It does the same work as BWindow’s
function of the same name.

Sync() flushes the connection, then waits until the Server has executed the last
instruction that was in the buffer before returning. This alternative to Flush() prevents
the application from getting ahead of the Server (ahead of what the user sees on-screen)
and keeps both processes synchronized.

(Note that all BViews attached to a window share the same connection to the
Application Server. Calling Flush() or Sync() for any one of them flushes the buffer for
all of them.)

See also: Flush() in the BWindow class

Frame()

BRect Frame(void) const

Returns the BView’s frame rectangle. The frame rectangle is first set by the BView
constructor and is altered only when the view is moved or resized. It’s stated in the
coordinate system of the BView’s parent.

See also: MoveBy(), ResizeBy(), the BView constructor

FrameMoved()

virtual void FrameMoved(BPoint parentPoint)

Implemented by derived classes to respond to a notification that the view has moved
within its parent’s coordinate system. parentPoint gives the new location of the left top
corner of the BView’s frame rectangle.

Member Functions

DR3 The Interface Kit – 213

FrameMoved() is called only if the FRAME_EVENTS flag is set and the BView is attached
to a window.

If the view is both moved and resized, FrameMoved() is called before FrameResized().
This might happen, for example, if the BView’s automatic resizing mode is
FOLLOW_TOP_RIGHT_BOTTOM and its parent is resized both horizontally and vertically.

The default (BView) version of this function is empty.

< Currently, FrameMoved() is also called when a hidden window is shown on-screen. >

See also: MoveBy(), FrameMoved() in the BWindow class, SetFlags()

FrameResized()

virtual void FrameResized(float width, float height)

Implemented by derived classes to respond to a notification that the view has been
resized. The arguments state the new width and height of the view. The resizing could
have been the result of a user action (resizing the window) or of a programmatic one
(calling ResizeTo() or ResizeBy()).

FrameResized() is called only if the FRAME_EVENTS flag is set and the BView is attached
to a window.

BView’s version of this function is empty.

See also: ResizeBy(), FrameResized() in the BWindow class, SetFlags()

FrontColor() see SetFrontColor()

GetCharEscapements(), GetCharEdges()

void GetCharEscapements(char charArray[], long numChars,
short escapementArray[], float *factor) const

void GetCharEdges(char charArray[], long numChars,
edge_info edgeArray[]) const

These two functions are designed for programmers who want to precisely position
characters on the screen or printed page. For each character passed in the charArray,
they write information about the horizontal dimension of the character into the
escapementArray or the edgeArray. Both functions assume the BView’s current font.
(Therefore, neither has any effect unless the BView is attached to a window.)

Escapement. An “escapement” is simply the width of a character recorded in very
small units. The units are sufficiently tiny to permit detailed information to be kept in

Member Functions

214 – The Interface Kit DR3

integer form for every character in the font. Because the units are small, escapement
values are quite large. (The term “escapement” has its historical roots in the fact that the
carriage of a typewriter had to move or “escape” a certain distance after each character
was typed to make room for the next character.)

The escapement of a character measures the amount of horizontal room it requires when
positioned between other characters in a line of text. It includes a measurement of the
space required to display the character itself, plus some extra room on the left and right
edges to separate the character from its neighbors. In a proportionally spaced font, each
character has a distinctive escapement. The illustration below shows the approximate
escapements for the letters ‘l’ and ‘p’ as they might appear together in a word like
“help” or “ballpark.” The escapement for each character is the distance between the
vertical lines:

GetCharEscapements() measures the same space that functions such as BView’s
StringWidth() and BTextView’s LineWidth() do, though it measures each character
individually and records the result in arbitrary (rather than coordinate) units.

The escapement of a character in a particular font is a constant no matter what the font
size. To convert an escapement value to coordinate units, you must multiply it by three
values:

• A floating-point conversion factor,
• The font size (in points), and
• The resolution of the output device.

GetCharEscapements() writes the conversion factor into the variable referred to by
factor. GetFontInfo() can provide the current font size. When the output device is a
printer, the resolution should be the actual resolution (the dpi or “dots per inch”) at
which it prints. When the output device is the screen, the resolution should be 72. (This
reflects the fact that screen pixels are taken to equal coordinate units—and one
coordinate unit is 1/72 of an inch, or roughly equivalent to one typographical point.)

Edges. Edge values measure how far a character outline is inset from its left and right
escapement boundaries. GetCharEdges() provides edge values in standard coordinate
units, not escapement units, < although those units are currently declared short rather

lp

Member Functions

DR3 The Interface Kit – 215

than float >. It takes into account the size of the current font. It places the edge values
into an array of edge_info structures. Each structure has a left and a right data member,
as follows:

typedef struct {
 short left;
 short right;
} edge_info;

The illustration below shows typical character edges. As in the illustration above, the
solid vertical lines mark escapement boundaries. The dotted lines mark off the part of
each escapement that’s an edge, the distance between the character outline and the
escapement boundary:

This is the normal case. The left edge is a positive value measured rightward from the
left escapement boundary. The right edge is a negative value measured leftward from
the right escapement boundary.

However, if the characters of a font overlap, the left edge can be a negative value and the
right edge can be positive. This is illustrated below:

Note that the italic ‘l’ extends beyond its escapement to the right, and that the ‘p’ begins
before its escapement to the left. In this case, instead of separating the adjacent
characters, the edges determine how much they overlap.

lp

lp

Member Functions

216 – The Interface Kit DR3

Edge values are specific to each character and depend on nothing but the character (and
the font). They don’t take into account any contextual information; for example, the
right edge for italic ‘l’ would be the same no matter what letter followed. Edge values
therefore aren’t sufficient to decide how character pairs can be kerned. Kerning is
contextually dependent on the combination of two particular characters.

See also: GetFontInfo()

GetClippingRegion()

void GetClippingRegion(BRegion *region) const

Modifies the BRegion object passed as an argument so that it describes the current
clipping region of the BView, the region where the BView is allowed to draw. It’s most
efficient to allocate temporary BRegions on the stack:

BRegion clipper;
GetClippingRegion(&clipper);
. . .

Ordinarily, the clipping region is the same as the visible region of the view, the part of
the view currently visible on-screen. The visible region is equal to the view’s bounds
rectangle minus:

• The frame rectangles of its children,

• Any areas that are clipped because the view doesn’t lie wholly within the frame
rectangles of all its ancestors in the view hierarchy, and

• Any areas that are obscured by other windows or that lie in a part of the window
that’s off-screen.

The clipping region can be smaller than the visible region if the program restricted it by
calling SetClippingRegion(). It will exclude any area that doesn’t intersect with the
region passed to SetClippingRegion().

While the BView is being updated, the clipping region contains just those parts of the
view that need to be redrawn. This may be smaller than the visible region, or the region
restricted by SetClippingRegion(), if:

• The update occurs during scrolling. The clipping region will exclude any of the
view’s visible contents that the Application Server is able to shift to their new
location and redraw automatically.

• The view rectangle has grown (because, for example, the user resized the window
larger) and the update is needed only to draw the new parts of the view.

Member Functions

DR3 The Interface Kit – 217

• The update was caused by Invalidate() and the rectangle passed to Invalidate()
didn’t cover all of the visible region.

• The update was necessary because CopyBits() couldn’t fill all of a destination
rectangle.

This function works only if the BView is attached to a window. Unattached BViews
can’t draw and therefore have no clipping region.

See also: SetClippingRegion(), Draw(), Invalidate()

GetFontInfo()

void GetFontInfo(font_info *fontInfo) const

Writes information about the BView’s current font into the structure referred to by
fontInfo. The font_info structure contains the following fields:

font_name name The name of the font, which can be as long as 32
characters, plus a null terminator. The name can be set
by BView’s SetFontName() function.

short size The size of the font in points. It can be set by
SetFontSize().

short shear The shear angle, which is 90.0° by default and can vary
between 45.0° and 135.0°. It can be set by
SetFontShear().

short rotation The angle of rotation, which is 0.0° by default. It’s set by
SetFontRotation().

short ascent How far characters ascend above the baseline.

short descent How far characters descend below the baseline.

short leading The amount of space separating lines (between the
descent of the line above and the ascent of the line
below).

The ascent, descent, and leading are measured in coordinate units. < The font_info
structure will be converted to floating-point values in a future release. >

See also: SetFontName()

Member Functions

218 – The Interface Kit DR3

GetKeys()

void GetKeys(key_info *keyInfo, bool checkQueue)

Writes information about the state of the keyboard into the key_info structure referred to
by keyInfo. This structure contains the following fields:

ulong char_code An ASCII character value, such as ‘a’ or BACKSPACE.

ulong key_code A code identifying the key that produced the character.

ulong modifiers A mask indicating which modifier keys are down and
which keyboard locks are on.

uchar key_states[16] A bit field that records the state of all the keys on the
keyboard, and all keyboard locks.

These fields match the BMessage entries that record information about a key-down
event.

If the checkQueue flag is FALSE, GetKeys() provides information about the current state
of the keyboard.

However, if the checkQueue flag is TRUE, GetKeys() first checks the message queue to
see whether it contains any messages reporting keyboard (key-down or key-up) events.
If there are keyboard messages waiting in the queue, it takes the information from the
oldest event, places it in the keyInfo structure, and removes the message from the queue.
Each time GetKeys() is called, it gets another keyboard message from the queue. If the
queue doesn’t contain any keyboard messages, it reports the current state of the
keyboard, just as if checkQueue were FALSE.

When called repeatedly in a loop, GetKeys() will empty the queue of keyboard
messages and then reflect the current state of the keyboard. In this way, you can be sure
that your application has not jumped ahead of the user and overlooked any reports of the
user’s keyboard actions.

This function never looks at the current message, even if it happens to report a keyboard
event and checkQueue is TRUE. The current message isn’t in the queue. To get
information about the current message, you must call BLooper’s CurrentMessage()
function:

BMessage *current == myView->Window()->CurrentMessge();

If GetKeys() takes a keyboard message from the queue, all the key_info fields are filled
in from the event message. However, if it captures the current state of the keyboard, the
char_code and key_code fields are set to 0; these fields are appropriate only for
reporting particular events.

When the modifiers field reflects the current keyboard state, it contains the same
information that the Modifiers() function returns.

Member Functions

DR3 The Interface Kit – 219

The key_states array works identically to the “states” array passed in a key-down
message. See “Key States” on page 61 for information on how to read the array.

See also: Modifiers(), KeyDown(), “Keyboard Information” on page 53 of the chapter
introduction

GetMouse()

void GetMouse(BPoint *cursor, ulong *buttons, bool checkQueue = TRUE) const

Provides the location of the cursor and the state of the mouse buttons. The position of
the cursor is recorded in the variable referred to by cursor; it’s provided in the BView’s
own coordinates. A bit is set in the variable referred to by buttons for each mouse button
that’s down. < There currently is no API for distinguishing between the buttons. >

The cursor doesn’t have to be located within the view for this function to work; it can be
anywhere on-screen. However, the BView must be attached to a window.

If the checkQueue flag is set to FALSE, GetMouse() provides information about the
current state of the mouse buttons and the current location of the cursor.

If checkQueue is TRUE, as it is by default, this function first looks in the message queue
for any pending reports of mouse-moved or mouse-up events. If it finds any, it takes the
one that has been in the queue the longest (the oldest event), removes it from the queue,
and reports the cursor location and button states that were recorded in the message.
Each GetMouse() call removes another message from the queue. If the queue doesn’t
hold any MOUSE_MOVED or MOUSE_UP messages, GetMouse() reports the current state
of the mouse and cursor, just as if checkQueue were FALSE.

This function is typically called from within a MouseDown() function to track the
location of the cursor and wait for the mouse button to go up. By having it check the
message queue, you can be sure that you haven’t overlooked any of the cursor’s
movement or missed a mouse-up event (quickly followed by another mouse-down) that
might have occurred before the first GetMouse() call.

See also: Modifiers()

Hide(), Show()

virtual void Hide(void)

virtual void Show(void)

These functions hide a view and show it again.

Hide() makes the view invisible without removing it from the view hierarchy. The
visible region of the view will be empty and the BView won’t receive update messages.
If the BView has children, they also are hidden.

Member Functions

220 – The Interface Kit DR3

Show() unhides a view that had been hidden. This function doesn’t guarantee that the
view will be visible to the user; it merely undoes the effects of Hide(). If the view didn’t
have any visible area before being hidden, it won’t have any after being shown again
(given the same conditions).

Calls to Hide() and Show() can be nested. For a hidden view to become visible again,
the number of Hide() calls must be matched by an equal number of Show() calls.

However, Show() can only undo a previous Hide() call on the same view. If the view
became hidden when Hide() was called to hide the window it’s in or to hide one of its
ancestors in the view hierarchy, calling Show() on the view will have no effect. For a
view to come out of hiding, its window and all its ancestor views must be unhidden.

Hide() and Show() can affect a view before it’s attached to a window. The view will
reflect its proper state (hidden or not) when it becomes attached. Views are created in an
unhidden state.

See also: Hide() in the BWindow class, IsHidden()

Invalidate()

void Invalidate(BRect rect)
void Invalidate(void)

Invalidates the rect portion of the view, causing update messages—and consequently
Draw() notifications—to be generated for the BView and all descendants that lie wholly
or partially within the rectangle. The rectangle is stated in the BView’s coordinate
system.

If no rectangle is specified, the BView’s entire bounds rectangle is invalidated.

Since only BViews that are attached to a window can draw, only attached BViews can be
invalidated.

See also: Draw(), GetClippingRegion(), UpdateIfNeeded() in the BWindow class

InvertRect()

void InvertRect(BRect rect)

Inverts all the colors displayed within the rect rectangle. A subsequent InvertRect() call
on the same rectangle restores the original colors.

The rectangle is stated in the BView’s coordinate system.

See also: system_colors() global function

Member Functions

DR3 The Interface Kit – 221

IsFocus()

bool IsFocus(void) const

Returns TRUE if the BView is the current focus view for its window, and FALSE if it’s not.
The focus view changes as the user chooses one view to work in and then another—for
example, as the user moves from one text field to another when filling out an on-screen
form. The change is made programmatically through the MakeFocus() function.

See also: CurrentFocus() in the BWindow class, MakeFocus()

IsHidden()

bool IsHidden(void) const

Returns TRUE if the view has been hidden by the Hide() function, and FALSE otherwise.

This function returns TRUE whether Hide() was called to hide the BView itself, to hide an
ancestor view, or to hide the BView’s window. When a window is hidden, all its views
are hidden with it. When a BView is hidden, all its descendants are hidden with it.

If the view has no visible region—perhaps because it lies outside its parent’s frame
rectangle or is obscured by a window in front—this function may nevertheless return
FALSE. It reports only whether the Hide() function has been called to hide the view, hide
one of the view’s ancestors in the view hierarchy, or hide the window where the view is
located.

If the BView isn’t attached to a window, IsHidden() returns the state that it will assume
when it becomes attached. By default, views are not hidden.

See also: Hide()

KeyDown()

virtual void KeyDown(ulong aChar)

Implemented by derived classes to respond to a message reporting a key-down event.
Whenever a BView is the focus view of the active window, it receives a KeyDown()
notification for each character the user types, except for those that:

• Are produced while a Command key is held down. Command key events are
interpreted as keyboard shortcuts.

• Can operate the default button in a window. The BButton object’s KeyDown()
function is called, rather than the focus view’s.

The argument, aChar, names the character reported in the event. It’s an ASCII value
that takes into account the affect of any modifier keys that were held down or keyboard
locks that were in effect at the time. For example, Shift-i is reported as uppercase ‘I’
(0x49) and Control-i is reported as a TAB (0x09).

Member Functions

222 – The Interface Kit DR3

The character can be tested against ASCII codes and these constants:

BACKSPACE LEFT_ARROW INSERT
ENTER RIGHT_ARROW DELETE
SPACE UP_ARROW HOME
TAB DOWN_ARROW END
ESCAPE PAGE_UP

FUNCTION_KEY PAGE_DOWN

Only keys that generate characters produce key-down events; the modifier keys on their
own do not.

You can determine which modifier keys were being held down at the time of the event
by calling BLooper’s CurrentMessage() function and looking up the “modifiers” entry
in the BMessage it returns. If aChar is FUNCTION_KEY and you want to know which key
produced the character, you can look up the “key” entry in the BMessage and test it
against these constants:

F1_KEY F6_KEY F11_KEY
F2_KEY F7_KEY F12_KEY
F3_KEY F8_KEY PRINT_KEY (Print Screen)
F4_KEY F9_KEY SCROLL_KEY (Scroll Lock)
F5_KEY F10_KEY PAUSE_KEY

For example:

if (aChar == FUNCTION_KEY) {
 BMessage *msg = Window()->CurrentMessage();
 long key = msg->FindLong("key");
 if (msg->Error == NO_ERROR) {
 switch (key) {
 case F1_KEY:
 . . .
 break;
 case F2_KEY:
 . . .
 break;
 . . .
 }
 }
}

The BView version of KeyDown() is empty.

See also: “Key-Down Events” on page 46 and “Keyboard Information” on page 53 of
the chapter introduction, FilterKeyDown() and SetDefaultButton() in the BWindow class,
Modifiers()

Member Functions

DR3 The Interface Kit – 223

LeftTop()

BPoint LeftTop(void) const

Returns the coordinates of the left top corner of the view—the smallest x and y
coordinate values within the bounds rectangle.

See also: LeftTop() in the BRect class, Bounds()

Looper() see Window()

MakeFocus()

virtual void MakeFocus(bool flag = TRUE)

Makes the BView the current focus view for its window (if flag is TRUE), or causes it to
give up that status (if flag is FALSE). The focus view is the view that displays the current
selection and is expected to handle reports of key-down events when the window is the
active window. There can be no more than one focus view per window at a time.

When called to make a BView the focus view, this function invokes MakeFocus() for the
previous focus view, passing it an argument of FALSE. It’s thus called twice—once for
the new and once for the old focus view.

Calling MakeFocus() is the only way to make a view the focus view; the focus doesn’t
automatically change on mouse-down events. BViews that can display the current
selection (including an insertion point) or that can accept pasted data should call
MakeFocus() in their MouseDown() functions.

A derived class can override MakeFocus() to add code that takes note of the change in
status. For example, a BView that displays selectable data may want to highlight the
current selection when it becomes the focus view, and remove the highlighting when it’s
no longer the focus view.

If the BView isn’t attached to a window, this function has no effect.

See also: CurrentFocus() in the BWindow class, IsFocus()

MessageDropped()

virtual bool MessageDropped(BMessage *message, BPoint point)

Implemented by derived classes to read data from a message that the user dragged and
dropped on the view and to initiate whatever course of action this new information
entails. The BMessage object is freed after MessageDropped() returns, so you must
copy any of its data you want to keep.

Member Functions

224 – The Interface Kit DR3

When the message was dropped, the cursor was located at point within the BView’s
coordinate system.

If the BView accepts the message, it should return TRUE. A return of FALSE rejects the
message and causes MessageDropped() to be called for the BView’s parent. The
notification works its way up the view hierarchy until it finds a BView that will return
TRUE, or it reaches the top view.

The BView version of this function always returns FALSE; by default, views don’t accept
dropped messages.

Often the messages that can be successfully dropped on a view hold data that could also
be pasted from the clipboard. To handle this data in common code, MessageDropped()
and the Paste() function you define for the view can pass the data to a third function
implemented for this purpose. MessageDropped() would extract the data from the
message and Paste() would get it from the clipboard.

If a BView displays any of the data it takes from the message, it should generally make
itself the focus view:

bool MyView::MessageDropped(BMessage *message, BPoint point)
{
 MakeFocus(TRUE);
 . . .
 return TRUE;
}

The messages that a user drags and drops on a view might have their source in any
application. The Browser will probably be a common source, since it permits users to
drag representations of database records. The message in which the Browser packages
the dragged information is identical to one that reports a refs-received event. It has a
single entry named “refs” containing one or more record_ref (REF_TYPE) items and
REFS_RECEIVED as the command constant.

You can choose whether your version of MessageDropped() should handle these
messages or not. If it does, it might simply pass them to the RefsReceived() function
you implemented in a class derived from BApplication.

See also: “Message-Dropped Events” on page 49, FilterMessageDropped() in the
BWindow class, RefsReceived() in the BApplication class of the Application Kit,
MouseMoved(), the BMessage class

Member Functions

DR3 The Interface Kit – 225

Modifiers()

ulong Modifiers(void) const

Returns a mask that has a bit set for each keyboard lock that’s on and for each modifier
state that’s set because the user is holding down a modifier key. The mask can be tested
against these constants:

SHIFT_KEY COMMAND_KEY CAPS_LOCK
CONTROL_KEY MENU_KEY SCROLL_LOCK
OPTION_KEY NUM_LOCK

No bits are set (the mask is 0) if no locks are on and none of the modifiers keys are
down.

If it’s important to know which physical key the user is holding down, the one on the
right or the one on the left, the mask can be further tested against these constants:

LEFT_SHIFT_KEY RIGHT_SHIFT_KEY
LEFT_CONTROL_KEY RIGHT_CONTROL_KEY
LEFT_OPTION_KEY RIGHT_OPTION_KEY
LEFT_COMMAND_KEY RIGHT_COMMAND_KEY

By default, on a 101-key keyboard, the keys labeled “Alt(ernate)” function as the
Command modifiers, the key on the right labeled “Control” functions as the right
Option key, and only the left “Control” key is available to function as a Control
modifier. However, users can change this configuration with the Keyboard utility.

See also: “Modifier Keys” on page 57 of the introduction to the chapter, GetKeys()

MouseDown()

virtual void MouseDown(BPoint point)

Implemented by derived classes to respond to a mouse-down event within the view. The
location of the cursor at the time of the event is given by point in the BView’s
coordinates.

MouseDown() functions are often implemented to track the cursor while the user holds
the mouse button down and then respond when the button goes up. You can call the

Member Functions

226 – The Interface Kit DR3

GetMouse() function to learn the current location of the cursor and the state of the
mouse buttons. For example:

void MyView::MouseDown(BPoint point)
{
 ulong buttons;
 . . .
 do {
 snooze(30);
 GetMouse(&point, &buttons, TRUE);
 . . .
 } while (buttons);
 . . .
}

To get complete information about the mouse-down event, look inside the BMessage
object returned by BLooper’s CurrentMessage() function.

The BView version of MouseDown() is empty.

See also: “Mouse-Down Events” on page 47, FilterMouseDown() in the BWindow
class, GetMouse()

MouseMoved()

virtual void MouseMoved(BPoint point, ulong transit, BMessage *message)

Implemented by derived classes to respond to mouse-moved events associated with the
view. As the user moves the cursor over a window, the Application Server generates a
continuous stream of messages reporting where the cursor is located.

The first argument, point, gives the cursor’s new location in the BView’s coordinate
system. The second argument, transit, is one of three constants,

ENTERED_VIEW,
INSIDE_VIEW, or
EXITED_VIEW

which explains whether the cursor has just entered the visible region of the view, is now
inside the visible region having previously entered, or has just exited from the view.
When the cursor crosses a boundary separating the visible regions of two views
(perhaps moving from a parent to a child view, or from a child to a parent),
MouseMoved() is called for each of the BViews, once with a transit code of
EXITED_VIEW and once with a code of ENTERED_VIEW.

If the user is dragging a bundle of information from one location to another, the final
argument, message, is a pointer to the BMessage object that holds the information. If a
message isn’t being dragged, message is NULL.

A MouseMoved() function might be implemented to ignore the INSIDE_VIEW case and
respond only when the cursor enters or exits the view. For example, a BView might

Member Functions

DR3 The Interface Kit – 227

alter its display to indicate whether or not it can accept a message that has been dragged
to it. Or it might be implemented to change the cursor image when it’s over the view.

MouseMoved() notifications should not be used to track the cursor inside a view. Use
the GetMouse() function instead. GetMouse() provides the current cursor location plus
information on whether any of the mouse buttons are being held down.

The default version of MouseMoved() is empty.

See also: “Mouse-Moved Events” on page 48, FilterMouseMoved() in the BView class,
DragMessage()

MoveBy(), MoveTo()

void MoveBy(float horizontal, float vertical)

void MoveTo(BPoint point)
void MoveTo(float x, float y)

These functions move the view in its parent’s coordinate system without altering its size.

MoveBy() adds horizontal coordinate units to the left and right components of the frame
rectangle and vertical units to the top and bottom components. If horizontal and
vertical are positive, the view moves downward and to the right. If they’re negative, it
moves upward and to the left.

MoveTo() moves the upper left corner of the view to point—or to (x, y)—in the parent
view’s coordinate system and adjusts all coordinates in the frame rectangle accordingly.

Neither function alters the BView’s bounds rectangle or coordinate system.

None of the values passed to these functions should specify fractional coordinates; the
sides of a view must line up on screen pixels. Fractional values will be rounded to the
closest whole number.

If the BView is attached to a window, these functions cause its parent view to be
updated, so the BView is immediately displayed in its new location. If it doesn’t have a
parent or isn’t attached to a window, these functions merely alter its frame rectangle.

See also: FrameMoved(), ResizeBy()

Member Functions

228 – The Interface Kit DR3

MovePenBy(), MovePenTo(), PenLocation()

void MovePenBy(float horizontal, float vertical)

void MovePenTo(BPoint point)
void MovePenTo(float x, float y)

BPoint PenLocation(void)

These functions move the pen (without drawing a line) and report the current pen
location.

MovePenBy() moves the pen horizontal coordinate units to the right and vertical units
downward. If horizontal or vertical are negative, the pen moves in the opposite
direction.

MovePenTo() moves the pen to point—or to (x, y)—in the BView’s coordinate system.
If the pen is the size of just one pixel on the display device, the point positions that pixel.
If the pen is the size of a square with more than one pixel on a side, it positions the pixel
at the left top corner of the square. The pen extends to the right and below the point
specified.

PenLocation() returns the point where the pen is currently positioned in the BView’s
coordinate system. The default pen position is at (0.0, 0.0).

Some drawing functions also move the pen—to the end of whatever they draw. In
particular, this is true of StrokeLine(), DrawString(), and DrawChar(). Functions that
stroke a closed shape (such as StrokeEllipse()) don’t move the pen.

Like other functions that set graphics parameters, MovePenBy(), MovePenTo(), and
PenLocation() work only for BViews that are attached to a window.

See also: SetPenSize()

MoveTo() see MoveBy()

Name() see SetName()

Parent()

BView *Parent(void) const

Returns the BView’s parent, or NULL if the BView doesn’t have one.

See also: AddChild()

PenLocation() see MovePenBy()

Member Functions

DR3 The Interface Kit – 229

PenSize() see SetPenSize()

Pulse()

virtual void Pulse(void)

Implemented by derived classes to do something at regular intervals. Pulses are
regularly timed events, like the tick of a clock or the beat of a steady pulse. A BView
receives Pulse() notifications when no other messages are pending, but only if it asks for
them with the PULSE_NEEDED flag.

The interval between Pulse() calls can be set with BWindow’s SetPulseRate() function.
The default interval is around 500 milliseconds. The pulse rate is the same for all views
within a window, but can vary between windows.

Derived classes can implement a Pulse() function to do something that must be repeated
continuously. However, for time-critical actions, you should implement your own
timing mechanism.

The BView version of this function is empty.

See also: SetFlags(), the BView constructor, SetPulseRate() in the BWindow class

RemoveChild()

virtual bool RemoveChild(BView *childView)

Severs the link between the BView and childView, so that childView is no longer a child
of the BView. The childView retains all its own children and descendants, but they
become an isolated fragment of a view hierarchy, unattached to a window.

If it succeeds in removing childView, this function returns TRUE. If it fails, it returns
FALSE. It will fail if childView is not, in fact, a child of the BView.

See also: AddChild(), RemoveSelf()

RemoveSelf()

bool RemoveSelf(void)

Removes the BView from its parent and returns TRUE, or returns FALSE if the BView
doesn’t have a parent or for some reason can’t be removed from the view hierarchy.

This function acts just like RemoveChild(), except that it removes the BView itself
rather than one of its children.

See also: AddChild(), RemoveChild()

Member Functions

230 – The Interface Kit DR3

ResizeBy(), ResizeTo()

void ResizeBy(float horizontal, float vertical)

void ResizeTo(float width, float height)

These functions resize the view, without moving its left and top sides. ResizeBy() adds
horizontal coordinate units to the width of the view and vertical units to the height.
ResizeTo() makes the view width units wide and height units high. Both functions adjust
the right and bottom components of the frame rectangle accordingly.

Since a BView’s frame rectangle must be aligned on screen pixels, only integral values
should be passed to these functions. Values with fractional components will be rounded
to the nearest whole integer.

If the BView is attached to a window, these functions cause its parent view to be
updated, so the BView is immediately displayed in its new size. If it doesn’t have a
parent or isn’t attached to a window, these functions merely alter its frame and bounds
rectangles.

See also: FrameResized(), MoveBy(), Width() and Height() in the BRect class

ResizingMode() see SetResizingMode()

ScrollBy(), ScrollTo()

void ScrollBy(float horizontal, float vertical)

void ScrollTo(BPoint point)
void ScrollTo(float x, float y)

These functions scroll the contents of the view.

ScrollBy() adds horizontal to the left and right components of the BView’s bounds
rectangle, and vertical to the top and bottom components. This serves to shift the
display horizontal coordinate units to the left and vertical units upward. If horizontal
and vertical are negative, the display shifts in the opposite direction.

ScrollTo() shifts the contents of the view as much as necessary to put point—or (x, y)—at
the upper left corner of its bounds rectangle. The point is specified in the BView’s
coordinate system.

Anything in the view that was visible before scrolling and also visible afterwards is
automatically redisplayed at its new location. The remainder of the view is invalidated,
so the BView’s Draw() function will be called to fill in those parts of the display that
were previously invisible. The update rectangle passed to Draw() will be the smallest
rectangle that encloses just these new areas. If the view is scrolled in only one direction,
the update rectangle will be exactly the area that needs to be drawn.

Member Functions

DR3 The Interface Kit – 231

These function don’t work on BViews that aren’t attached to a window.

See also: GetClippingRegion()

SetBackColor() see SetFrontColor()

SetClippingRegion()

virtual void SetClippingRegion(BRegion *region)

Restricts the drawing that the BView can do to region.

The Application Server keeps track of a clipping region for each BView that’s attached
to a window. It clips all drawing the BView does to that region; the BView can’t draw
outside of it.

By default, the clipping region contains only the visible area of the view and, during an
update, only the area that actually needs to be drawn. By passing a region to this
function, an application can further restrict the clipping region. When calculating the
clipping region, the Server intersects it with the region provided. The BView can draw
only in areas common to the region passed and the clipping region as the Server would
otherwise calculate it. The region passed can’t expand the clipping region beyond what
it otherwise would be.

If called during an update, SetClippingRegion() restricts the clipping region only for the
duration of the update.

Calls to SetClippingRegion() are not additive; each region that’s passed replaces the
region that was passed in the previous call.

See also: GetClippingRegion(), Draw()

SetDrawingMode(), DrawingMode()

virtual void SetDrawingMode(drawing_mode mode)

drawing_mode DrawingMode(void) const

These functions set and return the BView’s drawing mode. They work only for BViews
that are attached to a window.

The mode can be set to any of the following nine constants:

OP_COPY OP_MIN OP_ADD
OP_OVER OP_MAX OP_SUBTRACT
OP_ERASE OP_INVERT OP_BLEND

Member Functions

232 – The Interface Kit DR3

The default drawing mode is OP_COPY. It and the other modes are explained under
“Drawing Modes” on page 27 of the introduction to this chapter.

See also: “Drawing Modes” in the chapter introduction

SetFlags(), Flags()

virtual void SetFlags(ulong mask)

inline ulong Flags(void) const

These functions set and return the flags that inform the Application Server about the
kinds of notifications the BView should receive. The mask set by SetFlags() and the
return value of Flags() is formed from combinations of the following constants:

WILL_DRAW,
FULL_UPDATE_ON_RESIZE,
FRAME_EVENTS, and
PULSE_NEEDED

The flags are first set when the BView is constructed; they’re explained in the
description of the BView constructor.

To set just one of the flags, combine it with the current setting:

myView->SetFlags(Flags() | FRAME_EVENTS);

The mask passed to SetFlags() and the value returned by Flags() can be 0.

See also: the BView constructor, SetResizingMode()

SetFontName(), SetFontSize(), SetFontRotation(), SetFontShear(),
SetFontSymbolSet()

virtual void SetFontName(const char *name)

virtual void SetFontSize(float points)

virtual void SetFontRotation(float degrees)

virtual void SetFontShear(float angle)

virtual void SetFontSymbolSet(const char *name)

These functions set characteristics of the font in which the BView draws text. The font
is part of the BView’s graphics state. It’s used by DrawString() and DrawChar() and
assumed by StringWidth(), GetFontInfo(), and GetCharEdges().

SetFontName() sets the precise name of the font, including the designation of whether
it’s bold, italic, oblique, black, narrow, or some other style. The name passed to this

Member Functions

DR3 The Interface Kit – 233

function must be the same as the name assigned to the font by the vendor. For example,
this code

SetFontName("Futura II Italic ATT");

sets the BView’s font to the TrueType™ italic Futura II font.

For SetFontName() to be successful, the name it’s passed must select a font that’s
installed on the user’s machine. The global get_font_name() function can provide the
names of all fonts that are currently installed. (Users can see the names listed in the
Keyboard application’s “Font” menu.)

A handful of fonts are provided with the release, including Times CG ATT, Futura II
ATT, Baskerville MT, and their stylistic variations. < Additional fonts can be installed
by placing them in the proper subdirectory of /system/fonts and rebooting the
machine. >

The names of the bitmap fonts that come with the system are:

chicago
geneva
monaco

They’re available only in one size—9.0 points. The default font is “monaco”. If you
ask for a font that isn’t available, you’ll get monaco instead.

< Currently, you must specifically ask for a bitmap font. In the future, bitmap
equivalents to the outline fonts will be automatically provided for on-screen display. >

SetFontSize() sets the size of the font. Valid sizes range from 4 points through 999
points. < Currently, fractional font sizes are not supported. >

SetFontRotation() sets the rotation of the baseline. The baseline rotates
counterclockwise from an axis on the left side of the character. The default (horizontal)
baseline is at 0°. For example, this code

SetFontRotation(45.0);
DrawString("to the northeast");

would draw a string that extended upwards and to the right. < Currently, fractional
angles of rotation are not supported. >

SetFontShear() sets the angle at which characters are drawn relative to the baseline. The
default (perpendicular) shear for all font styles, including oblique and italic ones, is
90.0°. The shear is measured counterclockwise and can be adjusted within the range
45.0° (slanted to the right) through 135.0° (slanted to the left). < Currently, fractional
shear angles are not supported. >

SetFontSymbolSet() determines the set of characters that can be displayed. A character
set maps graphic symbols (glyphs) to character values (ASCII codes). Sets differ
mainly in which symbols they associate with character values beyond the traditional
ASCII range (above 0x7f).

Member Functions

234 – The Interface Kit DR3

The default symbol set is “Macintosh”; there are many other possibilities, including:
“ISO 8859/9 Latin 5”, “Legal”, “PC-850 Multilingual”, and “Windows 3.1 Latin 2”.
The get_symbol_set_name() global function can provide a list of all currently available
symbol sets.

Except for the bitmap fonts, every font implements every symbol set. However, some
fonts may not provide all the characters in every set.

These five font functions work only for BViews that are attached to a window. < The
SetFontSize(), SetFontRotation(), and SetFontShear() functions don’t work for bitmap
fonts. >

Derived classes can override these functions to take any collateral measures required by
the font change. For example, BTextView and BListView override them to redisplay the
text in the new font.

See also: GetFontInfo(), AttachedToWindow(), get_font_name(),
get_symbol_set_name()

SetFrontColor(), FrontColor(), SetBackColor(), BackColor()

virtual void SetFrontColor(rgb_color aColor)

void SetFrontColor(uchar red, uchar green, uchar blue, uchar alpha = 0)

rgb_color FrontColor(void)

virtual void SetBackColor(rgb_color aColor)

void SetBackColor(uchar red, uchar green, uchar blue, uchar alpha = 0)

rgb_color BackColor(void)

These functions set and return the current front and background colors of the BView.
They work only for BViews that are attached to a window.

The front and background colors combine to form a pattern that’s passed as an argument
to most Stroke...() and Fill...() drawing functions. The solid_front pattern is the front
color alone, and solid_back is the background color alone.

The default front color is black—red, green, and blue values all equal to 0. The default
background color is white—red, green, and blue values all equal to 255. < The alpha
component of the color is currently ignored. >

The versions of SetFrontColor() and SetBackColor() that take separate arguments for the
red, blue, and green color components work by creating an rgb_color data structure and
passing it to the corresponding function that’s declared virtual. Therefore, if you want to
augment either function in some way, you need only override the rgb_color version.

See also: “Patterns” on page 25 of the chapter introduction, SetViewColor()

Member Functions

DR3 The Interface Kit – 235

SetName(), Name()

void SetName(const char *string)

const char *Name(void) const

These functions set and return the name that identifies the BView. The name is
originally set by the BView constructor. SetName() assigns the BView a new name, and
Name() returns the current name. The string returned by Name() belongs to the BView
object; it shouldn’t be altered or freed.

See also: the BView constructor, FindView()

SetPenSize(), PenSize()

virtual void SetPenSize(float size)

float PenSize(void)

SetPenSize() sets the size of the BView’s pen—the graphics parameter that determines
the thickness of stroked lines—and PenSize() returns the current pen size.

The pen size is translated from coordinate units to a device-specific number of pixels.
The pen is a square with that number of pixels on a side. When it strokes a line, the left
top pixel in the square follows the path of the line from pixel to pixel. Therefore, if the
pen square has more than one pixel on a side, it extends to the right and hangs below the
path being stroked. As it moves along the path, the pen paints the pixels that it touches.

The default pen size is 1.0 coordinate unit. It can be set to any non-negative value,
including 0.0. If set to 0.0, the size is translated to 1 pixel for all output devices. This
guarantees that it will always draw the thinnest possible line no matter what the device.

Thus, lines drawn with pen sizes of 1.0 and 0.0 will look alike on the screen (one pixel
thick), but the line drawn with a pen size of 1.0 will be 1/72 of an inch thick when
printed, however many printer pixels that takes, while the line drawn with a 0.0 pen size
will be just one pixel thick.

These functions can set and return the pen size only if the BView is attached to a
window.

See also: “The Pen” on page 24 and “Picking Pixels to Stroke and Fill” on page 34 of
the chapter introduction, StrokeArc() and the other Stroke...() functions, MovePenBy()

Member Functions

236 – The Interface Kit DR3

SetResizingMode(), ResizingMode()

virtual void SetResizingMode(ulong mode)

inline ulong ResizingMode(void) const

These functions set and return the BView’s automatic resizing mode. The resizing mode
is first set when the BView is constructed. The various possible modes are explained
where the constructor is described.

See also: the BView constructor, SetFlags()

SetViewColor()

void SetViewColor(rgb_color color)

Sets the color that’s shown in all areas of the view rectangle that the BView doesn’t
cover with its own drawing. When the clipping region is erased prior to an update, it’s
erased to the view color. When a view is resized to expose new areas that it doesn’t
draw in, the new areas are displayed in the view color.

The view color can be set only after the view is attached to a window. It’s best to set it
before the window is shown on-screen. The default color is white.

See also: “The View Color” on page 22 of the introduction to the chapter,
SetFrontColor()

Show() see Hide()

StringWidth()

float StringWidth(const char *string) const
float StringWidth(const char *string, long length) const

Returns how much room is required to draw length characters of string in the BView’s
current font. If no length is specified, the entire string is measured, up to the null
character, ‘\0’, which terminates it. The return value totals the width of all the
characters. It measures, in coordinate units, the length of the baseline required to draw
the string.

This function works only for BViews that are attached to a window (since only attached
views have a current font).

See also: GetFontInfo(), GetCharEscapements()

Member Functions

DR3 The Interface Kit – 237

StrokeArc(), FillArc()

void StrokeArc(BRect rect, float angle, float span,
const pattern *aPattern = &solid_front)

void StrokeArc(BPoint center, float xRadius, float yRadius,
float angle, float span,
const pattern *aPattern = &solid_front)

void FillArc(BRect rect, float angle, float span,
const pattern *aPattern = &solid_front)

void FillArc(BPoint center, float xRadius, float yRadius,
float angle, float span,
const pattern *aPattern = &solid_front)

These functions draw an arc, a portion of an ellipse. StrokeArc() strokes a line along the
path of the arc. FillArc() fills the wedge defined by straight lines stretching from the
center of the ellipse of which the arc is a part to the end points of the arc itself. For
example:

The arc is a section of the ellipse inscribed in rect—or the ellipse located at center,
where the horizontal distance from the center to the edge of the ellipse is measured by
xRadius and the vertical distance from the center to the edge is measured by yRadius.

The arc starts at angle and stretches along the ellipse for span degrees, where angular
coordinates are measured counterclockwise with 0° on the right, as shown below:

For example, if angle is 180.0° and span is 90.0°, the arc would be the lower left quarter
of the ellipse. The same arc would be drawn if angle were 270.0° and span were –90.0°.
< Currently, angle and span measurements in fractions of a degree are not supported. >

0.0°

45.0°
90.0°

135.0°

180.0°

225.0°
270.0°

315.0°

Member Functions

238 – The Interface Kit DR3

The width of the line drawn by StrokeArc() is determined by the current pen size. Both
functions draw using aPattern—or, if no pattern is specified, using the current front
color. Neither function alters the current pen position.

See also: StrokeEllipse()

StrokeEllipse(), FillEllipse()

void StrokeEllipse(BRect rect, const pattern *aPattern = &solid_front)

void StrokeEllipse(BPoint center, float xRadius, float yRadius,
const pattern *aPattern = &solid_front)

void FillEllipse(BRect rect, const pattern *aPattern = &solid_front)

void FillEllipse(BPoint center, float xRadius, float yRadius,
const pattern *aPattern = &solid_front)

These functions draw an ellipse. StrokeEllipse() strokes a line around the perimeter of
the ellipse and FillEllipse() fills the area the ellipse encloses.

The ellipse has its center at center. The horizontal distance from the center to the edge
of the ellipse is measured by xRadius and the vertical distance from the center to the
edge is measured by yRadius. If xRadius and yRadius are the same, the ellipse will be a
circle.

Alternatively, the ellipse can be described as one that’s inscribed in rect. If the rectangle
is a square, the ellipse will be a circle.

The width of the line drawn by StrokeEllipse() is determined by the current pen size.
Both functions draw using aPattern—or, if no pattern is specified, using the current
front color. Neither function alters the current pen position.

See also: SetPenSize()

StrokeLine()

void StrokeLine(BPoint start, BPoint end, const pattern *aPattern = &solid_front)

void StrokeLine(BPoint end, const pattern *aPattern = &solid_front)

Draws a straight line between the start and end points—or, if no starting point is given,
between the current pen position and end point—and leaves the pen at the end point.

This function draws the line using the current pen size and the specified pattern. If no
pattern is specified, the line is drawn in the current front color.

See also: SetPenSize(), BeginLineArray()

Member Functions

DR3 The Interface Kit – 239

StrokePolygon(), FillPolygon()

void StrokePolygon(BPolygon *polygon,
const pattern *aPattern = &solid_front)

void StrokePolygon(BPoint *pointList, long numPoints,
const pattern *aPattern = &solid_front)

void StrokePolygon(BPoint *pointList, long numPoints, BRect rect,
const pattern *aPattern = &solid_front)

void FillPolygon(BPolygon *aPolygon,
const pattern *aPattern = &solid_front)

void FillPolygon(BPoint *pointList, long numPoints,
const pattern *aPattern = &solid_front)

void FillPolygon(BPoint *pointList, long numPoints, BRect rect,
const pattern *aPattern = &solid_front)

These functions draw a polygon with an arbitrary number of sides. StrokePolygon()
strokes a line around the edge of the polygon using the current pen size. If a pointList is
specified rather than a BPolygon object, this function strokes a line from point to point,
connecting the first and last points if they aren’t identical. FillPolygon() fills in the entire
area enclosed by the polygon.

Both functions must calculate the frame rectangle of a polygon constructed from a point
list—that is, the smallest rectangle that contains all the points in the polygon. If you
know what this rectangle is, you can make the function somewhat more efficient by
passing it as the rect parameter.

Both functions draw using the specified pattern—or, if no pattern is specified, in the
current front color. Neither function alters the current pen position.

< Currently, StrokePolygon() doesn’t accept pen sizes other than 1 or patterns other than
the default. >

See also: SetPenSize(), the BPolygon class

StrokeRect(), FillRect()

void StrokeRect(BRect rect, const pattern *aPattern = &solid_front)

void FillRect(BRect rect, const pattern *aPattern = &solid_front)

These functions draw a rectangle. StrokeRect() strokes a line around the edge of the
rectangle; the width of the line is determined by the current pen size. FillRect() fills in
the entire rectangle.

Both functions draw using the pattern specified by aPattern—or, if no pattern is
specified, in the current front color. Neither function alters the current pen position.

See also: SetPenSize(), StrokeRoundRect()

Member Functions

240 – The Interface Kit DR3

StrokeRoundRect(), FillRoundRect()

void StrokeRoundRect(BRect rect, float xRadius, float yRadius,
const pattern *aPattern = &solid_front)

void FillRoundRect(BRect rect, float xRadius, float yRadius,
const pattern *aPattern = &solid_front)

These functions draw a rectangle with rounded corners. The corner arc is one-quarter of
an ellipse, where the ellipse would have a horizontal radius equal to xRadius and a
vertical radius equal to yRadius.

Except for the rounded corners of the rectangle, these functions work exactly like
StrokeRect() and FillRect().

Both functions draw using the pattern specified by aPattern—or, if no pattern is
specified, in the current front color. Neither function alters the current pen position.

See also: StrokeRect(), StrokeEllipse()

StrokeTriangle(), FillTriangle()

void StrokeTriangle(BPoint firstPoint, BPoint secondPoint, BPoint thirdPoint,
const pattern *aPattern = &solid_front)

void StrokeTriangle(BPoint firstPoint, BPoint secondPoint, BPoint thirdPoint,
BRect rect,
const pattern *aPattern = &solid_front)

void FillTriangle(BPoint firstPoint, BPoint secondPoint, BPoint thirdPoint,
const pattern *aPattern = &solid_front)

void FillTriangle(BPoint firstPoint, BPoint secondPoint, BPoint thirdPoint,
BRect rect,
const pattern *aPattern = &solid_front)

These functions draw a triangle, a three-sided polygon. StrokeTriangle() strokes a line
the width of the current pen size from the first point to the second, from the second point
to the third, then back to the first point. FillTriangle() fills in the area that the three points
enclose.

Each function must calculate the smallest rectangle that contains the triangle. If you
know what this rectangle is, you can make the function marginally more efficient by
passing it as the rect parameter.

Both functions do their drawing using the pattern specified by aPattern—or, if no
pattern is specified, in the current front color. Neither function alters the current pen
position.

< Currently, StrokeTriangle() doesn’t accept pen sizes other than 1 or patterns other than
the default. >

See also: SetPenSize()

Member Functions

DR3 The Interface Kit – 241

Sync() see Flush()

Window(), Looper()

BWindow *Window(void) const

virtual BLooper *Looper(void) const

Both these functions return the BWindow to which the BView belongs, or NULL if the
BView hasn’t yet been attached to a window. Looper() overrides the virtual function
first declared in the BReceiver class to return the BWindow as a pointer to a BLooper
object. Window() returns it more directly as a pointer to a BWindow.

See also: Looper() in the BReceiver class of the Application Kit, AddChild() in both
this and the BWindow class, AttachedToWindow()

WindowActivated()

virtual void WindowActivated(bool active)

Implemented by derived classes to take whatever steps are necessary when the BView’s
window becomes the active window, or when the window gives up that status. If active
is TRUE, the window has become active. If active is FALSE, it no longer is the active
window.

All objects in the view hierarchy receive WindowActivated() notifications when the
status of the window changes.

BView’s version of this function is empty.

See also: WindowActivated() in the BWindow class

Member Functions

242 – The Interface Kit DR3

Overview

DR3 The Interface Kit – 243

BWindow

Derived from: public BLooper

Declared in: <interface/Window.h>

Overview

The BWindow class defines an application interface to windows. Each BWindow object
corresponds to one window in the user interface.

At the most basic level, it’s the Application Server’s responsibility to provide an
application with the windows it needs. The Server allocates the memory each window
requires, renders images in the window on instructions from the application, and
manages the user interface. It equips windows with all the accouterments that let users
activate, move, resize, reorder, hide, and close them. These user actions are not
mediated by the application; they’re handled within the Application Server alone.
However, the Server sends the application messages notifying it of user actions that
affect the window. A class derived from BWindow can implement virtual functions
such as FrameResized(), QuitRequested(), and WindowActivated() to respond to these
messages.

BWindow objects are the application’s interface to the Server’s windows:

• Creating a BWindow object instructs the Application Server to produce a window
that can be displayed to the user. The BWindow constructor determines what kind
of window it will be and how it will behave. The window is initially hidden; the
Show() function makes it visible on-screen.

• BWindow functions give the application the ability to manipulate the window
programmatically—to activate, move, resize, reorder, hide, and close it just as a
user might.

• Classes derived from BWindow can implement functions that respond to events
affecting the window.

BWindow objects communicate directly with the Server. However, before this
communication can take place, the constructor for the BApplication object must
establish an initial connection to the Server. You must construct the BApplication object
before the first BWindow.

Overview

244 – The Interface Kit DR3

View Hierarchy

A window can display images, but it can’t produce them. To draw within a window, an
application needs a collection of various BView objects. For example, a window might
have several check boxes or radio buttons, a list of names, some scroll bars, and a
scrollable display of pictures or text—all provided by objects that inherit from the
BView class.

These BViews are created by the application and are associated with the BWindow by
arranging them in a hierarchy under a top view, a view that fills the entire content area of
the window. Views are added to the hierarchy by making them children of views
already in the hierarchy, which at the outset means children of the top view.

A BWindow doesn’t reveal the identity of its top view, but it does have functions that act
on the top view’s behalf. For example, BWindow’s AddChild() function adds a view to
the hierarchy as a child of the top view. Its FindView() function searches the view
hierarchy beginning with the top view.

Window Threads

Each window runs in its own thread—both in the Application Server and in the
application. When it’s constructed, a BWindow object spawns a window thread for the
application and begins running a message loop where it receives reports of user actions
associated with the window. You don’t have to call Run() to get the message loop going,
as you do for other BLoopers; Run() is called for you at construction time.

Actions initiated from a BWindow’s message loop are executed in the window’s thread.
This, of course, includes all actions that are spun off from the original event notification.
For example, if the user clicks a button in a window and this initiates a series of
calculations involving a variety of objects, those calculations will be executed in the
thread of the window where the button is located (unless the calculation explicitly
spawns other threads or posts messages to other BLoopers).

Quitting

To “close” a window is to remove the window from the screen, quit the message loop,
kill the window thread, and delete the BWindow object. As is the case for other
BLoopers, this process is initiated by a request to quit—a QUIT_REQUESTED message.

For a BWindow, a request to quit is an event that might be reported from the Application
Server (as when the user clicks a window’s close box) or from within the application (as
when the user clicks a “Close” menu item).

To respond to quit-requested events, classes derived from BWindow implement
QuitRequested() functions. QuitRequested() can prevent the window from closing, or
take whatever action is appropriate before the window is destroyed. It typically interacts

Hook Functions

DR3 The Interface Kit – 245

with the user, asking, for example, whether recent changes to a document should be
saved.

QuitRequested() is a hook function declared in the BLooper class; it’s not documented
here. See the BLooper class in the Application Kit for information on the function and
on how classes derived from BWindow might implement it.

Hook Functions

 FilterKeyDown() Can be implemented to filter reports of key-down events
before they’re dispatched by calling the focus view’s
KeyDown() function.

FilterMessageDropped() Can be implemented to filter reports of message-dropped
events before they’re dispatched by calling a BView’s
MessageDropped() function.

FilterMouseDown() Can be implemented to filter reports of mouse-down
events before they’re dispatched by calling a BView’s
MouseDown() function.

FilterMouseMoved() Can be implemented to filter reports of mouse-moved
events before they’re dispatched by calling a BView’s
MouseMoved() function.

FixMenus() Can be implemented to make sure menu data structures
are up to date before the menu is displayed to the user.

FrameMoved() Can be implemented to take note of the fact that the
window has moved.

FrameResized() Can be implemented to take note of the fact that the
window has been resized.

SavePanelClosed() Can be implemented to take note when the window’s
save panel closes.

SaveRequested() Can be implemented to save the document displayed in
the window when the user requests it in the save panel.

WindowActivated() Can be implemented to take whatever action is necessary
when the window becomes the active window, or when it
loses that status.

Constructor and Destructor

246 – The Interface Kit DR3

Constructor and Destructor

BWindow()

BWindow(BRect frame, const char *title, window_type type, ulong flags)

Produces a new window with the frame content area, spawns a new thread of execution
for the window, and begins running a message loop in that thread.

The first argument, frame, measures only the content area of the window; it excludes the
border and the title tab at the top. The window’s top view will be exactly the same size
and shape as its frame rectangle—though the top view is located in the window’s
coordinate system and the window’s frame rectangle is specified in the screen
coordinate system.

For the window to become visible on-screen, the frame rectangle you assign it must lie
within the frame rectangle of the screen. You can find the current dimensions of the
screen by calling get_screen_info(). In addition, both the width and height of frame
must be greater than 0.

Since a window is always aligned on screen pixels, the sides of its frame rectangle must
have integral coordinate values. Any fractional coordinates that are passed in frame will
be rounded to the nearest whole number.

The second argument, title, sets the title the window will display if it has a tab and also
determines the name of the window thread. The thread name is a string that prefixes
“w>” to the title in the following format:

"w>title"

If the title is long, only as many characters will be used as will fit within the limited
length of a thread name. (Only the thread name is limited, not the window title.) The
title (and thread name) can be changed with the SetTitle() function.

The title must be set, even if the window doesn’t have a tab to display it; it can’t be NULL,
but it can be an empty string.

The type of window is set by one of the following constants:

MODAL_WINDOW A modal window, one that disables other activity in
the application until the user dismisses it. It has a
border but no tab to display a title.

BORDERED_WINDOW An ordinary (nonmodal) window with a border but
no tab.

TITLED_WINDOW A window with a border and a tab. Most windows
are of this type. The title is displayed in the tab.

SHADOWED_WINDOW A window with a border and tab, and a drop
shadow on its right and bottom sides.

Constructor and Destructor

DR3 The Interface Kit – 247

The tab, border, and drop shadow are drawn around the window’s frame rectangle.

The final argument, flags, is a mask that determines the behavior of the window. It’s
formed by combining constants from the following set:

NOT_MOVABLE Prevents the user from being able to move the
window. By default, a window with a tab at the top
is movable.

NOT_H_RESIZABLE Prevents the user from resizing the window
horizontally. A window is horizontally resizable
by default.

NOT_V_RESIZABLE Prevents the user from resizing the window
vertically. A window is vertically resizable by
default.

NOT_RESIZABLE Prevents the user from resizing the window in any
direction. This constant is a shorthand that you can
substitute for the combination of NOT_H_RESIZABLE
and NOT_V_RESIZABLE. A window is resizable by
default.

NOT_CLOSABLE Prevents the user from closing the window
(eliminates the close box from its tab). Windows
with title tabs have a close box by default.

NOT_ZOOMABLE Prevents the user from expanding the window to
the full size of the screen.

ACCEPTS_FIRST_CLICK Enables the BWindow to receive mouse-down and
mouse-up messages even when it isn’t the active
window. By default, a click in a window that isn’t
the active window brings the window to the front
and makes it active, but doesn’t get reported to the
application. If a BWindow accepts the first click,
the event gets reported to the application, but it
doesn’t make the window active. The BView that
responds to the mouse-down message must take
responsibility for activating the window.

FLOATS Causes the window to float in front of other
windows.

If flags is 0, the window will be one the user can move, resize, close, and zoom. It won’t
float or accept the first click.

The window’s message loop reads messages delivered to the window and dispatches
them by calling a virtual function of the responsible object. The responsible object is
usually one of the BViews in the window’s view hierarchy. Views are notified of event
messages through MouseDown(), KeyDown(), MessageDropped(), MouseMoved() and

Member Functions

248 – The Interface Kit DR3

other virtual function calls. However, sometimes the responsible object is the BWindow
itself. It handles FrameMoved(), QuitRequested(), WindowActivated() and other
notifications.

The message loop begins to run when the BWindow is constructed and continues until
the window is told to quit and the BWindow object is deleted. Everything the window
thread does is initiated by a message of some kind.

See also: SetFlags(), SetTitle()

~BWindow()

virtual ~BWindow(void)

Frees all memory that the BWindow allocated for itself.

Call the Quit() function to destroy the BWindow object; don’t use the delete operator.
Quit() does everything that’s necessary to shut down the window—such as remove its
connection to the Application Server and get rid of its views—and invokes delete at the
appropriate time.

See also: Quit()

Member Functions

Activate()

void Activate(bool flag = TRUE)

Makes the BWindow the active window (if flag is TRUE), or causes it to relinquish that
status (if flag is FALSE). When this function activates a window, it reorders the window
to the front <of its tier>, highlights its tab, and makes it the window responsible for
handling subsequent keyboard events. When it deactivates a window, it undoes all these
things. It reorders the window to the back <of its tier> and removes the highlighting
from its tab. Another window (the new active window) becomes the target for keyboard
events.

When a BWindow is activated or deactivated (whether programmatically through this
function or by the user), it and all the BViews in its view hierarchy receive
WindowActivated() notifications.

This function will not activate a window that’s hidden.

See also: WindowActivated() in this and the BView class

Member Functions

DR3 The Interface Kit – 249

AddChild()

virtual void AddChild(BView *aView)

Adds aView to the hierarchy of views associated with the window, making it a child of
the window’s top view. If aView already has a parent, it’s forcibly removed from that
family and adopted into this one. A view can live with but one parent at a time.

This function calls aView’s AttachedToWindow() function to inform it that it now
belongs to the BWindow. Every view that descends from aView also becomes attached
to the window and receives its own AttachedToWindow() notification.

See also: AddChild() and AttachedToWindow() in the BView class, RemoveChild()

AddShortcut(), RemoveShortcut()

void AddShortcut(ulong aChar, ulong modifiers, BMessage *message)

void AddShortcut(ulong aChar, ulong modifiers, BMessage *message,
BView *target)

void RemoveShortcut(ulong aChar, ulong modifiers)

These functions set up, and tear down, keyboard shortcuts for the window. A shortcut is
a character (aChar) that the user can type, in combination with the Command key and
possibly one or more other modifiers to issue an instruction to the application. For
example, Command-r might rotate what’s displayed within a particular view. The
instruction is issued by posting a BMessage to the window thread.

Keyboard shortcuts are commonly associated with menu items. However, do not use
these functions to set up shortcuts for menus; use the BMenuItem constructor instead.
These BWindow functions are for shortcuts that aren’t associated with a menu. (The
version of AddShortcut() that takes a BMenuItem argument, declared in the header file
but not documented here, is for the internal use of the Interface Kit only.)

AddShortcut() registers a new window-specific keyboard shortcut. The first two
arguments, aChar and modifiers, specify the character and the modifier states that
together will issue the instruction. modifiers is a mask that combines any of the usual
modifier constants (see the Modifiers() function for the full list). Typically, it’s one or
more of these four (or it’s 0):

SHIFT_KEY
CONTROL_KEY

OPTION_KEY
COMMAND_KEY

COMMAND_KEY is assumed; it doesn’t have to be specified. The character value that’s
passed as an argument should reflect the modifier keys that are required. For example, if
the shortcut is Command-Shift-C, aChar should be ‘C’, not ‘c’.

Member Functions

250 – The Interface Kit DR3

The instruction that the shortcut issues is embodied in a model message that the
BWindow will copy and post whenever it’s notified of a key-down event matching the
aChar and modifiers combination (including COMMAND_KEY).

Before posting the message, it adds one data entry to the copy:

Data name Type code Description

“when” LONG_TYPE When the key-down event occurred, as
measured in milliseconds from the time
the machine was last booted.

The model message shouldn’t contain an entry of the same name.

The message is posted to the BWindow. If a target BView is specified, it will be named
as the message receiver. If a target isn’t specified, the current focus view will be named
as the receiver. If there is no focus view, the BWindow will act as the receiver.

The message is dispatched by calling the receiver’s MessageReceived() function. If
you add a keyboard shortcut to a window, you must implement a MessageReceived()
function that can respond to the message the shortcut generates.

(Note, however, that if the message has QUIT_REQUESTED or the constant for another
interface event as its what data member, it will be dispatched by calling a specific
function, like QuitRequested(), not MessageReceived().)

RemoveShortcut() unregisters a keyboard shortcut that was previously added.

See also: MessageReceived(), FilterKeyDown(), the BMenuItem constructor

Bounds()

BRect Bounds(void) const

Returns the current bounds rectangle of the window. The bounds rectangle encloses the
content area of the window and is stated in the window’s coordinate system. It’s exactly
the same size as the frame rectangle, but its left and top sides are always 0.0.

See also: Frame()

ChildAt(), CountChildren()

BView *ChildAt(long index) const

long CountChildren(void) const

< These first of these functions returns the child BView at index, or NULL if there’s no
such child of the BWindow’s top view. Indices begin at 0 and there are no gaps in the
list. The second function returns the number of children the top view has. Do not rely
on these functions as they may not remain in the API. >

Member Functions

DR3 The Interface Kit – 251

Close() see Quit()

CloseSavePanel() see RunSavePanel()

ConvertToScreen(), ConvertFromScreen()

void ConvertToScreen(BPoint *windowPoint) const
void ConvertToScreen(BRect *windowRect) const

void ConvertFromScreen(BPoint *screenPoint) const
void ConvertFromScreen(BRect *screenRect) const

These functions convert points and rectangles to and from the global screen coordinate
system. ConvertToScreen() converts the point referred to by windowPoint, or the
rectangle referred to by windowRect, from the window coordinate system to the screen
coordinate system. ConvertFromScreen() makes the opposite conversion; it converts
the point referred to by screenPoint, or the rectangle referred to by screenRect, from the
screen coordinate system to the window coordinate system.

The window coordinate system has its origin, (0.0, 0.0), at the left top corner of the
window’s content area.

See also: ConvertToScreen() in the BView class

CurrentFocus(), PreferredReceiver()

BView *CurrentFocus(void) const

virtual BReceiver *PreferredReceiver(void) const

Both these functions return the current focus view for the BWindow, or NULL if no view
is currently in focus. CurrentFocus() returns the object as a BView, and
PreferredReceiver() overrides the BLooper function to return it as a BReceiver.

The focus view is the BView that’s responsible for showing the current selection and
handling keyboard events when the window is the active window.

Various other objects in the Interface Kit, such as BButtons and BMenuItems, call
PreferredReceiver() to discover where they should post messages when they are
targeted to post them to the BWindow, but don’t have a specific receiver. This
mechanism permits these objects to be targeted to the current focus view. Thus, a menu
item or a control device can be set up to always act on whatever BView happens to be
displaying the current selection.

See also: MakeFocus() and IsFocus() in the BView class, SetTarget() in the BControl,
BListView, and BMenuItem classes, PreferredReceiver() in the BLooper class

DefaultButton() see SetDefaultButton()

Member Functions

252 – The Interface Kit DR3

DisableUpdates(), EnableUpdates()

void DisableUpdates(void)

void EnableUpdates(void)

These function disable automatic updating within the window, and re-enable it again.
Updating is enabled by default, so every user action that changes a view and every
program action that invalidates a view’s contents causes the view to be automatically
redrawn.

This may be inefficient when there are a number of changes to a view, or to a group of
views within a window. In this case, you can temporarily disable the updating
mechanism by calling DisableUpdates(), make the changes, then call EnableUpdates()
to re-enable updating and have all the changes displayed at once.

See also: Invalidate() in the BView class, UpdateIfNeeded()

DispatchMessage()

virtual void DispatchMessage(BMessage *message, BReceiver *receiver)

Overrides the BLooper function to dispatch messages as they’re received by the window
thread. This function is called for you each time the BWindow takes a message from its
queue. It dispatches the message by calling the virtual function that’s designated to
begin the application’s response.

• It dispatches messages that report system-defined events by calling an event-
specific virtual function implemented for the BWindow or the responsible BView.
See “Hook Functions for Interface Events” on page 42 of the introduction to this
chapter for a list of these functions.

• It dispatches other messages by calling the targeted receiver’s
MessageReceived() function.

Derived classes can override DispatchMessage() to make it dispatch specific kinds of
messages in other ways. For example:

void MyWindow::DispatchMessage(BMessage *message)
{
 if (message->what == MAKE_PREDICTIONS)
 predictor->GuessAbout(message);
 else
 BWindow::DispatchMessage(message);
}

The message loop deletes every message it receives when the function that
DispatchMessage() calls, and DispatchMessage() itself, return. The message should

Member Functions

DR3 The Interface Kit – 253

not be deleted in application code (unless DetachCurrentMessage() is first called to
detach it from the message loop).

See also: the BMessage class, DispatchMessage() and CurrentMessage() in the
BLooper class

EnableUpdates() see DisableUpdates()

FilterKeyDown()

virtual bool FilterKeyDown(ulong *aChar, BView **target)

Implemented by derived classes to interpret a key-down event before the window’s
focus view is notified with a KeyDown() function call. The first argument, aChar, points
to the character reported in the event. The second argument, target, points to the focus
BView that’s slated to receive the KeyDown() notification.

FilterKeyDown() is called for every key-down event that’s reported to the window, except
for those that might correspond to keyboard shortcuts. If it returns TRUE, the KeyDown()
virtual function implemented for the target view will be called. If it returns FALSE,
KeyDown() isn’t called and the key-down event isn’t handled (except to the extent that
FilterKeyDown() itself might be implemented to handle it).

Before returning TRUE, this function can change the aChar value that will be passed to
KeyDown(). (This, however, won’t change the “char” entry of the BMessage object that
reported the event and that CurrentMessage() returns). It can also change the target
BView to another view located within the same window. For example:

bool MyView::FilerKeyDown(ulong *aChar, BView **target)
{
 . . .
 if (*target->IsVeryMuchDisabled())
 *target = *target->Parent();
 . . .
 if (*aChar == ENTER)
 *aChar = TAB;
 . . .
}

Neither FilterKeyDown() nor KeyDown() is called for key-down events that are potential
keyboard shortcuts—that is, for any key-down event that’s produced while holding
down a Command key.

The BWindow version of FilterKeyDown() makes no changes to either the character or
the target BView and simply returns TRUE.

See also: KeyDown() in the BView class, AddShortcut(), Modifiers(), “Key-Down
Events” on page 46 of the introduction

Member Functions

254 – The Interface Kit DR3

FilterMessageDropped()

virtual bool FilterMessageDropped(BMessage *message, BPoint point,
BView **target)

Implemented by derived classes to preview a message-dropped event before
MessageDropped() is called for any of the window’s BViews. The first argument,
message, is the dropped message (not the message that reports the message-dropped
event, but the message that the user dragged and dropped). The second argument, point,
is the location of the cursor when the message was dropped; it’s stated in the window’s
coordinate system.

The third argument, target, points to the BView that’s scheduled to receive the
MessageDropped() notification. It’s the view located at point. However,
FilterMessageDropped() can be implemented to replace the target BView with another
view located within the same window. The replacement BView will then be notified
instead.

FilterMessageDropped() is called whenever the user drops a dragged message within
the window. By returning TRUE, it permits the target’s MessageDropped() function to
be called. By returning FALSE, it prevents any BView from notified of the message-
dropped event.

The default version of FilterMessageDropped() simply returns TRUE.

See also: MessageDropped() in the BView class, CurrentMessage() in the BLooper
class, “Message-Dropped Events” on page 49 of the introduction

FilterMouseDown()

virtual bool FilterMouseDown(BPoint point, BView **target)

Implemented by derived classes to return TRUE if the mouse-down event located at point
should be handled by a subsequent call to the target view’s MouseDown() function, and
FALSE if MouseDown() should not be called. The point is stated in the target view’s
coordinate system.

Before returning TRUE, this function can alter the BView that will receive the
MouseDown() notification—simply by changing the object that target points to. The
replacement target must be located in view hierarchy of the same window.

FilterMouseDown() is called for every mouse-down event within the window.
BWindow’s default version of the function never alters point and always returns TRUE.

See also: MouseDown() in the BView class, CurrentMessage() in the BLooper class,
“Mouse-Down Events” on page 47 in the chapter introduction

Member Functions

DR3 The Interface Kit – 255

FilterMouseMoved()

virtual bool FilterMouseMoved(BPoint point, ulong area, BMessage *message,
BView **target)

Implemented by derived classes to preview a mouse-moved event before
MouseMoved() is called for any of the window’s BViews.

FilterMouseMoved() is called once for every mouse-moved event associated with the
window. The event reports that the user has moved the cursor to a new point in the
window’s coordinate system. Normally, the BView that the cursor is over is notified by
calling its MouseMoved() virtual function. If the cursor has moved out of one view and
into another, both BViews are notified. However, by returning FALSE,
FilterMouseMoved() prevents any BViews from being notified of the event. A return of
TRUE permits MouseMoved() to be called.

The first argument, point, is the current location of the cursor, stated in the window’s
coordinate system. The second argument, area, conveys which part of the window the
cursor is over. It will be one of the following constants:

CONTENT_AREA The cursor is over the content area of the window.

CLOSE_BOX The cursor is over the close box in the title tab.

TITLE_BAR The cursor is inside the tab, but not over the close box.

RESIZE_AREA The cursor is over the area in the right bottom corner
where the window can be resized.

UNKNOWN_AREA It’s unknown where the cursor is, probably because it just
left the window.

If the cursor is over a BView in the window’s content area, a pointer to the view is
passed as the final argument, target. If the cursor isn’t over a BView, target points to a
NULL value.

In the normal course of events, the target view will receive a MouseMoved()
notification, provided FilterMouseMoved() returns TRUE. However, before returning
TRUE, FilterMouseMoved() can alter the target view. Depending on which BView is
chosen, the replacement BView will receive a MouseMoved() notification informing it
either that the cursor has just entered it—even though the cursor is really inside another
view—or that the cursor has moved somewhere else inside it, having previously
entered—even though the cursor is actually no longer inside the view. If the cursor had
previously entered the target view passed to this function, that view will be notified that
the cursor has left it, even though it really hasn’t.

If the user is moving the cursor to drag a BMessage object, the third argument, message,
points to the dragged BMessage. If nothing is being dragged, message is NULL.

Member Functions

256 – The Interface Kit DR3

The BWindow version of this function simply returns TRUE.

See also: MouseMoved() and DragMessage() in the BView class, “Mouse-Moved
Events” on page 48 of the chapter introduction

FindView()

BView *FindView(BPoint point) const
BView *FindView(const char *name) const

Returns the view located at point within the window, or the view tagged with name. The
point is specified in the window’s coordinate system (the coordinate system of its top
view), which has the origin at the upper left corner of the window’s content area.

If no view is located at the point given, or no view within the window has the name
given, this function returns NULL.

See also: FindView() in the BView class

FixMenus()

virtual void FixMenus(void)

Implemented by derived classes to make sure menus are up-to-date before they’re
placed on-screen. This function is called just before a menu belonging to the window is
about to be shown to the user. It gives the BWindow a chance to make any required
alterations—for example, disabling or enabling particular items—so that the menus are
in sync with the current state of the window.

See also: the BMenu and BMenuItem classes

Flush()

void Flush(void) const

Flushes the window’s connection to the Application Server, sending whatever happens
to be in the out-going buffer to the Server. The buffer is automatically flushed on every
update and after each message.

This function has the same effect as the Flush() function defined for the BView class.

See also: Flush in the BView class

Member Functions

DR3 The Interface Kit – 257

Frame()

BRect Frame(void) const

Asks the Application Server for the current frame rectangle for the window and returns
it. The frame rectangle encloses the content area of the window and is stated in the
screen coordinate system. It’s first set by the BWindow constructor, and is modified as
the window is resized and moved.

See also: MoveBy(), ResizeBy(), the BWindow constructor

FrameMoved()

virtual void FrameMoved(BPoint screenPoint)

Implemented by derived classes to respond to a notification that the window has moved.
The move—which placed the left top corner of the window’s content area at screenPoint
in the screen coordinate system—could be the result of the user dragging the window or
of the program calling MoveBy() or MoveTo(). If the user drags the window,
FrameMoved() is called repeatedly as the window moves. If the program moves the
window, it’s called just once to report the new location.

The default version of this function does nothing.

See also: MoveBy(), “Window-Moved Events” on page 51 of the chapter introduction

FrameResized()

virtual void FrameResized(float width, float height)

Implemented by derived classes to respond to a notification that the window’s content
area has been resized to a new width and height. The resizing could be the result of the
program calling ResizeTo() or ResizeBy()—in which case FrameResized() is called just
once to report the window’s new size—or of a user action—in which case it’s called
repeatedly as the user drags a corner of the window to resize it.

The default version of this function does nothing.

See also: ResizeBy(), “Window-Resized Events” on page 51 of the chapter introduction

GetTitle() see SetTitle()

Member Functions

258 – The Interface Kit DR3

Hide(), Show()

virtual void Hide(void)

virtual void Show(void)

These functions hide the window so it won’t be visible on-screen, and show it again.

Hide() removes the window from the screen. If it happens to be the active window,
Hide() also deactivates it. Hiding a window hides all the views attached to the window.
While the window is hidden, its BViews respond TRUE to IsHidden() queries.

Show() puts the window back on-screen. It places the window in front of other windows
and makes it the active window.

Calls to Hide() and Show() can be nested; if Hide() is called more than once, you’ll need
to call Show() an equal number of times for the window to become visible again.

A window begins life hidden (as if Hide() had been called once); it takes an initial call to
Show() to display it on-screen.

See also: IsHidden()

IsActive()

bool IsActive(void) const

Returns TRUE if the window is currently the active window, and FALSE if it’s not.

See also: Activate()

IsFront()

bool IsFront(void) const

Returns TRUE if the window is currently the frontmost window on-screen, and FALSE if
it’s not.

IsHidden()

bool IsHidden(void) const

Returns TRUE if the window is currently hidden, and FALSE if it isn’t.

Windows are hidden at the outset. The Show() function puts them on-screen, and Hide()
can be called to hide them again.

Member Functions

DR3 The Interface Kit – 259

If Show() has been called to unhide the window, but the window is totally obscured by
other windows or occupies coordinates that don’t intersect with the physical screen,
IsHidden() will nevertheless return FALSE, even though the window isn’t visible.

See also: Hide()

IsSavePanelRunning() see RunSavePanel()

Lock(), Unlock()

bool Lock(void)

void Unlock(void)

These functions lock and unlock the BWindow, so that another thread can’t alter crucial
data while the current thread is in the middle of doing something. Only one thread can
have the window locked at any given time. Lock() waits until it can lock the BWindow,
then returns TRUE. It returns FALSE only if the window can’t be locked at all—for
example if the BWindow was destroyed.

Calls to Lock() and Unlock() can be nested. If Lock() has been called more than once, it
will take an equal number of Unlock() calls to unlock the window.

It’s not necessary to lock a window when calling functions defined in the BWindow
class. BWindow functions are implemented to call Lock() and Unlock() when necessary.

< Currently, Lock() will not allow a thread to lock a BWindow if the same thread has the
BApplication object locked. You must unlock the BApplication object before locking a
window. >

See also: Lock() in the BApplication class

Modifiers()

ulong Modifiers(void) const

Returns a mask that has a bit set for each modifier key the user is holding down and for
each keyboard lock that’s set. The mask can be tested against these constants:

SHIFT_KEY COMMAND_KEY CAPS_LOCK
CONTROL_KEY MENU_KEY SCROLL_LOCK
OPTION_KEY NUM_LOCK

Member Functions

260 – The Interface Kit DR3

If a Shift, Command, Control, or Option key is down, the mask can be further tested
against the following constants to reveal which key it is, the one on the left or the one on
the right:

LEFT_SHIFT_KEY RIGHT_SHIFT_KEY
LEFT_CONTROL_KEY RIGHT_CONTROL_KEY
LEFT_OPTION_KEY RIGHT_OPTION_KEY
LEFT_COMMAND_KEY RIGHT_COMMAND_KEY

No bits are set (the mask is 0) if none of the modifiers keys are down and no locks are
on.

See also: Modifiers() and GetKeys() in the BView class, CurrentMessage() in the
BLooper class

MoveBy(), MoveTo()

void MoveBy(float horizontal, float vertical)

void MoveTo(BPoint point)
void MoveTo(float x, float y)

These functions move the window without resizing it. MoveBy() adds horizontal
coordinate units to the left and right components of the window’s frame rectangle and
vertical units to the frame’s top and bottom. If horizontal and vertical are negative, the
window moves upward and to the left. If they’re positive, it moves downward and to the
right. MoveTo() moves the left top corner of the window’s content area to point—or
(x, y)—in the screen coordinate system; it adjusts all coordinates in the frame rectangle
accordingly.

None of the values passed to these functions should specify fractional coordinates; a
window must be aligned on screen pixels. Fractional values will be rounded to the
closest whole number.

Neither function alters the BWindow’s coordinate system or bounds rectangle.

When a window is moved by one of these functions, a window-moved event is reported
to the window. This results in the BWindow’s FrameMoved() function being called.

See also: FrameMoved()

NeedsUpdate()

bool NeedsUpdate(void) const

Returns TRUE if any of the views within the window need to be updated, and FALSE if
they’re all up-to-date.

See also: UpdateIfNeeded()

Member Functions

DR3 The Interface Kit – 261

PreferredReceiver() see CurrentFocus()

Quit(), Close()

virtual void Quit(void)

inline void Close(void)

Quit() gets rid of the window and all its views. This function removes the window from
the screen, deletes all the BViews in its view hierarchy, destroys the window thread,
removes the window’s connection to the Application Server, and, finally, deletes the
BWindow object.

Use this function, rather than the delete operator, to destroy a window. Quit() applies
the operator after it empties the BWindow of views and severs its connection to the
application and Server. It’s dangerous to apply delete while these connections remain
intact.

BWindow’s Quit() works much like the BLooper function it overrides. When called
from the BWindow’s thread, it doesn’t return. When called from another thread, it
returns after all previously posted messages have been responded to and the BWindow
and its thread have been destroyed.

Close() is a synonym of Quit(). It simply calls Quit() so if you override Quit(), you’ll
affect how both functions work.

See also: QuitRequested() and Quit() in the BLooper class, QuitAllWindows() and
QuitRequested() in the BApplication class

RemoveChild()

virtual bool RemoveChild(BView *aView)

Removes aView from the BWindow’s view hierarchy, but only if aView was added to the
hierarchy as a child of the window’s top view (by calling BWindow’s version of the
AddChild() function).

If aView is successfully removed, RemoveChild() returns TRUE. If not, it returns FALSE.

See also: AddChild()

Member Functions

262 – The Interface Kit DR3

RemoveMouseEvents()

void RemoveMouseEvents(void)

< Removes messages reporting mouse-down and mouse-up events from the window’s
message queue. Don’t rely on this function; it’s likely to be removed from the API.
Instead, get the BMessageQueue and call its RemoveMessage() function, as follows:

myWindow->MessageQueue()->RemoveMessage(MOUSE_DOWN);
myWindow->MessageQueue()->RemoveMessage(MOUSE_UP)

>

See also: MessageQueue() in the BLooper class of the Application Kit

RemoveShortcut() see AddShortcut()

ResizeBy(), ResizeTo()

void ResizeBy(float horizontal, float vertical)

void ResizeTo(float width, float height)

These functions resize the window, without moving its left and top sides. ResizeBy()
adds horizontal coordinate units to the width of the window and vertical units to its
height. ResizeTo() makes the content area of the window width units wide and height
units high. Both functions adjust the right and bottom components of the frame
rectangle accordingly.

Since a BWindow’s frame rectangle must line up with screen pixels, only integral values
should be passed to these functions. Values with fractional components will be rounded
to the nearest whole number.

When a window is resized, either programmatically by these functions or by the user,
the BWindow’s FrameResized() virtual function is called to notify it of the change.

See also: FrameResized()

Member Functions

DR3 The Interface Kit – 263

RunSavePanel(), CloseSavePanel(), IsSavePanelRunning()

long RunSavePanel(const char *tentativeName = NULL,
const char *windowTitle = NULL,
const char *buttonLabel = NULL,
BMessage *message = NULL)

void CloseSavePanel(void)

bool IsSavePanelRunning(void)

RunSavePanel() requests the Browser to display a panel where the user can chose how
to save the document displayed in the window. The panel permits the user to navigate
the file system and type in file and directory names.

The arguments to this function are all optional. They’re used to configure the panel:

• If passed a tentativeName for the document displayed in the window, the save
panel will place it in a text field where the user can type a name for the file. The
name might designate an existing file, or it might simply be a placeholder name
like “UNNAMED” or “UNTITLED–3”. If a tentativeName isn’t passed, the text
field will be empty.

• If another windowTitle is not specified, the title of the window will include the
tentative filename. It will be “Save tentativeName As...” preceded by the name of
the application. The name is enclosed in quotes. For example:

WishMaker : Save “UNTITLED-3” As...

If a tentativeName isn’t passed, the quotes will be empty.

• If a buttonLabel label isn’t provided, the principal button in the panel (the default
button) will be labeled “Save”. (The panel also has a “Cancel” button.)

• If a message is passed, it can contain entries that further configure the panel. It
also serves as a model for the message that reports the directory and filename the
user selected. If a message isn’t provided, this information will be reported in a
standard SAVE_REQUESTED message.

If the message has one or both of the following entries, they will be used to help
configure the panel:

Data name Type code Description

“directory” REF_TYPE The record_ref for the directory that the
panel should display when it first comes
on-screen. If this entry is absent, the panel
will initially display the current directory
of the current volume.

“frame” RECT_TYPE A BRect that sets the size and position of
the panel in screen coordinates. If this

Member Functions

264 – The Interface Kit DR3

entry is absent, the Browser will choose an
appropriate frame rectangle for the panel.

When the user finishes choosing where to save the file and operates the “Save” (or
buttonLabel) button, the file panel sends a message to the BApplication object. If a
customized message is provided, it’s used as the model for the message that’s sent. If a
message isn’t provided, a standard SAVE_REQUESTED message is sent instead. In either
case, it has two data entries:

Data name Type code Description

“name” STRING_TYPE The name of the file in which the
document should be saved.

“directory” REF_TYPE A record_ref reference to the directory
where the file should reside.

A SAVE_REQUESTED message is dispatched by calling the SaveRequested() hook
function; the “name” and “directory” are passed as arguments to SaveRequested().
This function should be implemented to create the file, if necessary, and save the
document. RunSavePanel() doesn’t do this work; it simply delivers a BMessage object
with the information you need to do the job.

A customized message works much like the model messages assigned to BControl
objects and BMenuItems. The save panel makes a copy of the model, adds the “name”
and “directory” entries (as described above) to the copy, and sends the copy to the
application, which delivers it to the BWindow. Other entries in the message remain
unchanged.

The message can have any command constant you choose. If it’s SAVE_REQUESTED, the
“name” and “directory” will be extracted from the message and passed to
SaveRequested(). Otherwise, nothing is extracted and the message is dispatched by
calling MessageReceived().

The save panel doesn’t automatically disappear when the user operates the “Save” (or
buttonLabel) button; it remains on-screen until CloseSavePanel() is called (or until the
application quits). You can choose to leave the panel on-screen if the user hasn’t chosen
a valid filename. IsSavePanelRunning() will report whether the save panel is currently
displayed on-screen. A BWindow can run only one save panel at a time.

The save panel is automatically closed when user operates the “Cancel” button.
Whenever it’s closed, by the user or the application, a PANEL_CLOSED message is sent to
the application and the SavePanelClosed() hook function is called.

RunSavePanel() returns NO_ERROR if it succeeds in getting the Browser to put the panel
on-screen. If the Browser isn’t running or the save panel already is, it returns
SYS_ERROR. If the Browser is running but the application can’t communicate with it, it
returns an error code that indicates what went wrong; these codes are the same as those
documented for the BMessenger class in the Application Kit.

See also: SaveRequested(), SavePanelClosed()

Member Functions

DR3 The Interface Kit – 265

SavePanelClosed()

virtual void SavePanelClosed(BMessage *message)

Implemented by derived classes to take note when the save panel is closed. The
message argument contains information about how the panel was closed and its state at
the time it was closed. It has entries under the names “frame” (the panel’s frame
rectangle), “directory” (the directory the panel displayed), and “canceled” (whether the
user closed the panel). Some of this information can be retained to configure the panel
the next time it runs.

See also: “Panel-Closed Events” on page 52 of the chapter introduction,
RunSavePanel()

SaveRequested()

virtual void SaveRequested(record_ref directory, const char *filename)

Implemented by derived classes to save the document displayed in the window. This
function is called when the BWindow receives a SAVE_REQUESTED message from the
save panel. It reports that the user has asked for the file to be saved in the directory
indicated and assigned the specified filename. The file may already exist, or the
application may need to create it to carry out the request.

There’s no guarantee that the directory and filename are valid.

If the file can be saved as requested, you may want this function to call
CloseSavePanel() to remove the panel from the screen. If the file can’t be saved,
SaveRequested() should notify the user. In some cases, you may want to leave the
panel on-screen so the user can try again with a different directory or filename.

See also: RunSavePanel()

ScreenChanged()

virtual void ScreenChanged(BRect frame, color_space mode)

Implemented by derived classes to respond to a notification that the screen configuration
has changed. This function is called for all affected windows when:

• The number of pixels the screen displays (the size of the pixel grid) is altered,
• < The screen changes its location in the screen coordinate system, or
• The color mode of the screen changes. >

frame is the new frame rectangle of the screen, and mode is its new color space.

Member Functions

266 – The Interface Kit DR3

< Currently, there can be only one monitor per machine, so the screen can’t change
where its located in the screen coordinate system. Moreover, there is no way to change
the screen color space. Only the pixel grid can change. >

See also: set_screen_size(), “Screen-Changed Events” on page 51 of the chapter
introduction

SetDefaultButton(), DefaultButton()

void SetDefaultButton(BButton *button)

BButton *DefaultButton(void) const

SetDefaultButton() makes button the default button for the window—the button that the
user can operate by pressing the Enter key. DefaultButton() returns the button that
currently has that status, or NULL if there is no default button.

At any given time, only one button in the window can be the default. SetDefaultButton()
may, therefore, affect two buttons: the one that’s forced to give up its status as the
default button, and the one that acquires that status. Both buttons are redisplayed, so
that the user can see which one is currently the default, and both are notified of their
change in status through MakeDefault() virtual function calls.

If the argument passed to SetDefaultButton() is NULL, there will be no default button for
the window. The current default button loses its status and is appropriately notified with
a MakeDefault() function call.

The Enter key can operate the default button only while the window is the active
window. However, the BButton doesn’t have to be the focus view. If another view is the
focus view, it won’t be notified of key-down events where the character reported is
ENTER.

See also: MakeDefault() in the BButton class

SetDiscipline()

void SetDiscipline(bool flag)

Sets a flag that determines how much programming discipline the system will enforce.
When flag is TRUE, as it is by default, Kit functions will check to be sure various rules are
adhered to. For example, most BView functions will require the caller to first lock the
window. < Currently, this is the only rule that comes under the discipline flag. > When
flag is FALSE, these rules are not enforced.

The discipline flag should be set to TRUE while an application is being developed.
However, once it has matured, and it’s clear that none of the rules are being disobeyed,

Member Functions

DR3 The Interface Kit – 267

the flag can be set to FALSE. This will eliminate various checking operations and
improve performance.

See also: “Locking the Window” in the BView class overview

SetLimits()

void SetLimits(float minWidth, float maxWidth, float minHeight, float maxHeight)

Sets limits on the size of the window. The user won’t be able to resize the window to
have a width less than minWidth or greater than maxWidth, nor to have a height less than
minHeight or greater than maxHeight. By default, the minimums are sufficiently small
and the maximums sufficiently large to accommodate any window within reason.

This function constrains the user, not the programmer. It’s legal for an application to set
a window size that falls outside the permitted range. The limits are imposed only when
the user attempts to resize the window; at that time, the window will jump to a size that’s
within range.

Since the sides of a window must line up on screen pixels, the minimums and
maximums should be whole numbers.

See also: the BWindow constructor

SetMainMenuBar()

void SetMainMenuBar(BMenuBar *menuBar)

Makes the specified BMenuBar object the “main” menu bar for the window—the object
that’s at the root of the menu hierarchy that users can navigate using the keyboard.

If a window contains only one BMenuBar view, it’s automatically designated the main
menu bar. If there’s more than one BMenuBar in the window, the last one added to the
window’s view hierarchy is considered to be the main one.

If there’s a “true” menu bar displayed along the top of the window, its menu hierarchy is
the one that users should be able to navigate using the keyboard. This function can be
called to make sure that the BMenuBar object at the root of that hierarchy is the “main”
menu bar.

See also: the BMenuBar class

Member Functions

268 – The Interface Kit DR3

SetPulseRate()

void SetPulseRate(long milliseconds)

Sets how often Pulse() is called for the BWindow’s views.

By turning on the PULSE_NEEDED flag, a BView can request periodic Pulse()
notifications. By default, pulse events are posted every 500 milliseconds, as long as no
other events are pending. Each event causes Pulse() to be called for every BView that
requested the notification.

SetPulseRate() permits you to set a different interval. The interval set should not be less
than 100 milliseconds; differences less than 50 milliseconds may not be noticeable. A
finer granularity can’t be guaranteed.

All BViews attached to the same window share the same pulse rate.

See also: Pulse() in the BView class

SetTitle(), GetTitle()

void SetTitle(const char *newTitle)

void GetTitle(char *theTitle) const

These functions set and return the window’s title. SetTitle() replaces the current title
with newTitle. It also renames the window thread in the following format:

"w>newTitle"

where as many characters of the newTitle are included in the thread name as will fit.

GetTitle() copies the current title into the memory referred to by theTitle. Make sure that
enough memory is allocated to hold the title no matter how long it might be.

A window’s title and thread name are originally set by an argument passed to the
BWindow constructor.

See also: the BWindow constructor

Show() see Hide()

UpdateIfNeeded()

void UpdateIfNeeded(void)

Causes the Draw() virtual function to be called immediately for each BView object that
needs updating. If no views in the window’s hierarchy need to be updated, this function
does nothing.

Member Functions

DR3 The Interface Kit – 269

BView’s Invalidate() function generates an update message that the BWindow receives
just as it receives other messages. Although update messages take precedence over
other kinds of messages the BWindow receives, the window thread can respond to only
one message at a time. It will update the invalidated view as soon as possible, but it
must finish responding to the current message before it can get the update message.

This may not be soon enough for a BView that’s engaged in a time-consuming response
to the current message. UpdateIfNeeded() forces an immediate update, without waiting
to return the BWindow’s message loop. However, if works only if called from within
the BWindow’s thread.

(Because the message loop expedites the handling of update messages, they’re never
considered the current message and are never returned by BLooper’s CurrentMessage()
function.)

See also: Draw() in the BView class, Invalidate() in the BView class, NeedsUpdate()

WindowActivated()

virtual void WindowActivated(bool active)

Implemented by derived classes to make any changes necessary when the window
becomes the active window, or when it ceases being the active window. If active is
TRUE, the window has just become the new active window, and if active is FALSE, it’s
about to give up that status to another window.

The BWindow receives a WindowActivated() notification whenever its status as the
active window changes. Each of its BViews is also notified.

See also: WindowActivated() in the BView class

Member Functions

270 – The Interface Kit DR3

Member Functions

DR3 The Interface Kit – 271

Global Functions

This section describes the global (nonmember) functions defined in the Interface Kit.
All these functions deal with aspects of the system-wide environment for the user
interface—the keyboard, the screen, installed fonts and symbol sets, and the list of
possible colors.

The Application Server maintains this environment. Therefore, for any of these
functions to work, your application needs a connection to the Server. The connection
they all depend on is the one established when the BApplication object is constructed.
Consequently, none of them should be called before a BApplication object is present in
your application.

count_fonts() see get_font_name()

count_screens() see get_screen_info()

count_symbol_sets() see get_symbol_set_name()

desktop_color() see set_desktop_color()

get_font_name(), count_fonts()

<interface/InterfaceDefs.h>

void get_font_name(long index, font_name *name)

long count_fonts(void)

These two functions are used in combination to get the names of all installed fonts. For
example:

long numFonts = count_fonts();
font_name buf;

for (long i = 0; i < numFonts; i++) {
 get_font_name(i, &buf);
 . . .
}

The names of all installed fonts are kept in an alphabetically ordered list.
get_font_name() reads one of the names from the list, the name at index, and copies it

Member Functions

272 – The Interface Kit DR3

into the name buffer. Font names can be up to 32 characters long, plus a null terminator.
Indices begin at 0.

count_fonts() returns the number of fonts currently installed, the number of names in the
list.

See also: GetFontInfo() and SetFontName() in the BView class

get_keyboard_id()

<interface/InterfaceDefs.h>

long get_keyboard_id(ushort *theId)

Obtains the keyboard identifier from the Application Server and writes it into the
variable referred to by theId. This number reveals what kind of keyboard is currently
attached to the computer.

The identifier for the standard 101-key keyboard—and for keyboards with a similar set
of keys—is 0x83ab. < Currently, this is the only value this function can provide. > See
“Key Codes” on page 53 for illustrations showing the keys found on a standard
keyboard.

If unsuccessful for any reason, get_keyboard_id() returns SYS_ERROR. If successful, it
returns NO_ERROR.

get_screen_info(), count_screens()

<interface/InterfaceDefs.h>

void get_screen_info(screen_info *theInfo)

void get_screen_info(long index, screen_info *theInfo)

long count_screens(void)

These functions provide information about the monitors (screens) that are currently
hooked up to the Be computer.

Each screen that’s attached to the Be machine is identified by an index into a system-
wide screen list. The screen at index 0 is the one that has the origin of the screen
coordinate system at its left top corner. Other screens in the list are unordered; they’re
located elsewhere in the screen coordinate system that the first screen defines.
< Currently, multiple screens are not supported, so the screen at index 0 is the only one
in the list. >

Member Functions

DR3 The Interface Kit – 273

get_screen_info() writes information about the screen at index into the screen_info
structure referred to by theInfo. If no index is mentioned, this function assumes the
screen at index 0. The screen_info structure contains the following fields:

color_space mode The depth and color interpretation of pixel data in
the screen’s frame buffer. (See the BBitmap class
description for an explanation of the various
color_space modes.)

BRect frame The frame rectangle of the screen—the rectangle
that defines the size and location of the screen in
the screen coordinate system.

void *bits A pointer to the frame buffer.

long bytes_per_row The number of bytes used to specify one row of
pixel data in the frame buffer.

count_screens() returns the number of screens (monitors) that are attached to the
computer. < Currently, no more than one screen can be attached, so this function always
returns 1. >

See also: the BBitmap class

get_symbol_set_name(), count_symbol_sets()

<interface/InterfaceDefs.h>

void get_symbol_set_name(long index, symbol_set_name *name)

long count_symbol_sets(void)

These functions are used to get the names of all available symbol sets. They work much
like the parallel font functions get_font_name() and count_fonts().

A symbol set associates character symbols (glyphs) with character codes (ASCII
values). They differ mainly in how they extend the standard ASCII set—how they
assign characters to codes above 0x7f.

get_symbol_set_name() gets one name from the list of symbol sets, the name at index,
and copies it into the name buffer. count_symbol_sets() returns the total number of
symbol sets (the number of names in the list).

Unlike font names, the names of symbol sets are not arranged alphabetically.

Every font implements every symbol set. However, some fonts implement particular
sets more fully than others—that is, some characters in a symbol set may not be
available in some fonts. But the position of each character in the set (its character code)
remains the same across all fonts.

See also: SetFont() in the BView class, get_font_name()

Member Functions

274 – The Interface Kit DR3

index_for_color()

<interface/InterfaceDefs.h>

uchar index_for_color(rgb_color aColor)

uchar index_for_color(uchar red, uchar green, uchar blue, uchar alpha = 0)

Returns an index into the list of 256 colors that comprise the COLOR_8_BIT color space.
The value returned picks out the listed color that most closely matches a full RGB_24_BIT
color—specified either as an rgb_color value, aColor, or by its red, green, and blue
components. < (The alpha component is currently ignored.) >

The returned index identifies a color in the COLOR_8_BIT color space. It can, for
example, be passed to BBitmap’s SetBits() function.

To find the fully specified color that an index picks out, you have to get the color list
from the system color map. For example, if you first obtain the index for the “best fit”
color that most closely matches an arbitrary color,

uchar index = index_for_color(134, 210, 6);

you can then use the index to locate that color in the color list:

rgb_color bestFit = system_colors()->color_list[index];

See also: system_colors(), the BBitmap class

restore_key_map() see system_key_map()

set_desktop_color(), desktop_color()

<interface/InterfaceDefs.h>

void set_desktop_color(rgb_color color)

rgb_color desktop_color(void)

These functions set and return the color that will be displayed on the so-called
“desktop”—the bare backdrop against which windows are displayed. The color is the
same for all screens attached to the same machine.

set_keyboard_locks()

<interface/InterfaceDefs.h>

void set_keyboard_locks(ulong modifiers)

Turns the keyboard locks—Caps Lock, Num Lock, and Scroll Lock—on and off. The
keyboard locks that are listed in the modifiers mask passed as an argument are turned

Member Functions

DR3 The Interface Kit – 275

on; those not listed are turned off. The mask can be 0 (to turn off all locks) or it can
contain any combination of the following constants:

CAPS_LOCK
NUM_LOCK
SCROLL_LOCK

See also: system_key_map(), Modifiers() in the BView class

set_modifier_key()

<interface/InterfaceDefs.h>

void set_modifier_key(ulong modifier, ulong key)

Maps a modifier role to a particular key on the keyboard, where key is a key identifier
and modifier is one of the these constants:

CAPS_LOCK LEFT_SHIFT_KEY RIGHT_SHIFT_KEY
NUM_LOCK LEFT_CONTROL_KEY RIGHT_CONTROL_KEY
SCROLL_LOCK LEFT_OPTION_KEY RIGHT_OPTION_KEY
MENU_KEY LEFT_COMMAND_KEY RIGHT_COMMAND_KEY

The key in question serves as the named modifier key, unmapping any key that
previously played that role. The change remains in effect until the default key map is
restored.

Modifier keys can also be mapped by calling system_key_map() and altering the
key_map structure directly. This function is merely a convenient alternative for
accomplishing the same thing.

See also: system_key_map()

set_screen_size()

<interface/InterfaceDefs.h>

void set_screen_size(long index, BRect grid, bool makeDefault = TRUE)

Sets the size of the pixel grid displayed on the monitor at index in the screen list.
< Since a machine currently can have only one monitor, index should always be 0. >

The grid is the size of the screen measured in pixels—the number of pixels that it
displays horizontally and vertically. This function sets the grid to the dimensions
recorded in the grid rectangle. Only two screen sizes are currently supported—
640 × 480 and 800 × 600—so the rectangle passed should be one of the following:

BRect(0.0, 0.0, 639.0, 479.0)
BRect(0.0, 0.0, 799.0, 599.0)

Member Functions

276 – The Interface Kit DR3

Another rectangle with the same dimensions as one of these can be substituted. The
rectangle doesn’t have to match the frame rectangle of the screen; only its dimensions
matter.

(The rectangles are specified in coordinate units, so their dimensions are one unit less
than the dimensions of the screen in pixels. This is because a rectangle aligned on
screen pixels covers one more column of pixels than its width and one more row than its
height. See the BRect class for an explanation.)

If the makeDefault flag is TRUE, the new screen size becomes the default and will be used
the next time the machine reboots. If the flag is FALSE, the change is for the current
session only; the machine will reboot in the previously determined default screen size.

When the size of the screen grid changes, every affected BWindow object is notified
with a ScreenChanged() function call. < Since there’s currently only one screen, all
windows are affected and all, whether on-screen or hidden, receive ScreenChanged()
notifications. >

See also: ScreenChanged() in the BWindow class, get_screen_info()

system_colors()

<interface/InterfaceDefs.h>

color_map *system_colors(void)

Returns a pointer to the system’s color map. The color map defines the set of 256 colors
that can be displayed in the COLOR_8_BIT color space. A single set of colors is shared by
all applications connected to the Application Server.

The color_map structure is defined in interface/InterfaceDefs.h and contains the
following fields:

long id An identifier that the Server uses to distinguish one
color map from another.

rgb_color color_list[256] A list of the 256 colors, expressed as rgb_color
structures. Indices into the list can be used to
specify colors in the COLOR_8_BIT color space.
See the index_for_color() function above.

uchar inversion_map[256] A mapping of each color in the color_list to its
opposite color. Indices are mapped to indices. An
example of how this map might be used is given
below.

uchar index_map[32768] An array that maps RGB colors—specified using
five bits per component—to their nearest
counterparts in the color list. An example of how
to use this map is also given below.

Member Functions

DR3 The Interface Kit – 277

The inversion_map is a list of indices into the color_list where each index locates the
“inversion” of the original color. The inversion of the n’th color in color_list would be
found as follows:

uchar inversionIndex = system_colors()->inversion_map[n];
rgb_color inversionColor =
 system_colors()->color_list[inversionIndex];

Inverting an inverted index returns the original index, so this code

uchar color = system_colors()->inversion_map[inversionIndex];

would return n. < Inverted colors are used, primarily, for highlighting. Given a color, its
highlight complement is its inversion. >

The index_map maps every RGB combination that can be expressed in 15 bits (five bits
per component) to a single color_list index that best approximates the original RGB
data. The following example demonstrates how to squeeze 24-bit RGB data into a 15-
bit number that can be used as an index into the index_map:

long rgb15 = (((red & 0xf8) << 7) |
 ((green & 0xf8) << 2) |
 ((blue & 0xf8) >> 3));

Most applications won’t need to use the index map directly; the index_for_color()

function performs the same conversion with less fuss (no masking and shifting
required). However, applications that implement repetitive graphic operations, such as
dithering, may want to access the index map themselves, and thus avoid the overhead of
an additional function call.

You should never modify or free the color_map structure returned by this function.

See also: index_for_color()

system_key_map(), restore_key_map()

<interface/InterfaceDefs.h>

key_map *system_key_map(void)

void restore_key_map(void)

The first of these functions returns a pointer to the system’s key map—the structure that
describes the role of each key on the keyboard. The second function restores the default
key map, in case any of its fields have been changed.

The system key map is shared by all applications. An application can alter values in the
structure that system_key_map() returns—and thus alter the roles that the keys play—

Member Functions

278 – The Interface Kit DR3

but it should make sure that those changes are local to itself and don’t affect other,
unsuspecting applications. In particular, it should:

• Modify the key map only when one of its windows becomes the active window,
and

• Restore the default key map when it no longer has the active window.

Through the Keyboard utility, users can configure the keyboard to their liking. The
user’s preferences affect all applications; they’re captured in the default key map and
stored in a file (system/Key_map).

When the machine reboots or when restore_key_map() is called, the key map is read
from this file. If the file doesn’t exist, the original map encoded in the Application
Server is used.

The key_map structure contains a large number of fields, but it can be broken down into
these five parts:

• A version number.

• A series of fields that determine which keys will function as modifier keys—such
as Shift, Control, or Num Lock.

• A field that sets the initial state of the keyboard locks in the default key map.

• A series of ordered tables that assign character values to keys. Keys assigned a
value other than 0 produce key-down events when pressed. This includes almost
all the keys on the keyboard (all except for a handful of modifier keys).

• A series of tables that locate the dead keys for diacritical marks and determine
how a combination of a dead key plus another key is mapped to a particular
character.

The following sections describe each part of the key_map structure in turn.

Version. The first field of the key map is a version number:

ulong version An internal identifier for the key map.

The version number doesn’t change when the user configures the keyboard, and
shouldn’t be changed programmatically either. You can ignore it.

Modifiers. Modifier keys set states that affect other user actions on the keyboard and
mouse. Eight modifier states are defined—Shift, Control, Option, Command, Menu,
Caps Lock, Num Lock, and Scroll Lock. These states are discussed under “Modifier
Keys” on page 57 of the introduction. They overlap, but don’t exactly match the key
caps found on a standard keyboard—which generally has a set of Alt(ernate) keys,
rarely Option keys, and only sometimes Command and Menu keys. Because of these

Member Functions

DR3 The Interface Kit – 279

differences, the mapping of keys to modifiers is the area of the key map most open to the
user’s personal judgement and taste, and consequently to changes in the default
configuration. Applications are urged to respect the user’s preferences.

Since two keys, one on the left and one on the right, can be mapped to the Shift, Control,
Option, and Command modifiers, the keyboard can have as many as twelve modifier
keys. The key_map structure has one field for each key:

ulong caps_key The key that functions as the Caps Lock key—by
default, this is the key labeled “Caps Lock,” key
0x3b.

ulong scroll_key The key that functions as the Scroll Lock key—by
default, this is the key labeled “Scroll Lock,” key
0x0f.

ulong num_key The key that functions as the Num Lock key—by
default, this is the key labeled “Num Lock,” key
0x22.

ulong left_shift_key A key that functions as a Shift key—by default,
this is the key on the left labeled “Shift,” key 0x4b.

ulong right_shift_key Another key that functions as a Shift key—by
default, this is the key on the right labeled “Shift,”
key 0x56.

ulong left_command_key A key that functions as a Command key—by
default, this is the left “Alt” key, key 0x5d.

ulong right_command_key Another key that functions as a Command key—by
default, this is the right “Alt” key, key 0x5f.

ulong left_control_key A key that functions as a Control key—by default,
this is the key labeled “Control” on the left, key
0x5c.

ulong right_control_key Another key that functions as a Control key—by
default, this key is not mapped. (The value of the
field is set to 0.)

ulong left_option_key A key that functions as an Option key—by default,
this is the key that’s labeled “Command” (or that
has a command symbol) on the right (not left) of
some keyboards, key 0x67. This key doesn’t exist
on, and therefore isn’t mapped for, a standard 101-
key keyboard.

Member Functions

280 – The Interface Kit DR3

ulong right_option_key A key that functions as an Option key—by default,
this is the key labeled “Control” on the right, key
0x60.

ulong menu_key A key that initiates keyboard navigation of the
menu hierarchy—by default, this is the key labeled
“Menu,” key 0x68. This key doesn’t exist on, and
therefore isn’t mapped for, a standard 101-key
keyboard.

Each field names the key that functions as that modifier. For example, when the user
holds down the key whose code is set in the right_option_key field, the OPTION_KEY and
RIGHT_OPTION_KEY bits are turned on in the modifiers mask that the various Modifiers()
functions return. When the user then strikes a character key, the OPTION_KEY state
influences the character that’s generated.

If a modifier field is set to a value that doesn’t correspond to an actual key on the
keyboard (including 0), that field is not mapped. No key fills that particular modifier
role.

Keyboard locks. One field of the key map sets initial modifier states:

ulong lock_settings A mask that determines which keyboard locks are
turned on when the machine reboots or when the
default key map is restored.

The mask can be 0 or may contain any combination of these three constants:

CAPS_LOCK
SCROLL_LOCK
NUM_LOCK

It’s 0 by default; there are no initial locks.

Altering the lock_settings field has no effect unless the altered key map is made the
default (by writing it to a file that replaces system/Key_map).

Character maps. The principal job of the key map is to assign character values to keys.
This is done in a series of nine tables:

ulong control_map[128] The characters that are produced when a Control
key is down but both Command keys are up.

ulong option_caps_shift_map[128]
The characters that are produced when Caps Lock
is on and both a Shift key and an Option key are
down.

Member Functions

DR3 The Interface Kit – 281

ulong option_caps_map[128]
The characters that are produced when Caps Lock
is on and an Option key is down.

ulong option_shift_map[128] The characters that are produced when both a Shift
key and an Option key are down.

ulong option_map[128] The characters that are produced when an Option
key is down.

ulong caps_shift_map[128] The characters that are produced when Caps Lock
is on and a Shift key is down.

ulong caps_map[128] The characters that are produced when Caps Lock
is on.

ulong shift_map[128] The characters that are produced when a Shift key
is down.

ulong normal_map[128] The characters that are produced when none of the
other tables apply.

Each of these tables is an array of 128 characters (declared as ulongs). Key codes are
used as indices into the arrays. The value stored at any particular index is the character
associated with that key. For example, the code assigned to the M key is 0x52; the
characters to which the M key is mapped are recorded at index 0x52 in the various
arrays.

The tables are ordered. Character values from the first applicable array are used, even if
another array might also seem to apply. For example, if Caps Lock is on and a Control
key is down (and both Command keys are up), the control_map array is used, not
caps_map. If a Shift key is down and Caps Lock is on, the caps_shift_map is used, not
shift_map or caps_map.

Notice that the last eight tables (all except control_map) are paired, with a table that
names the Shift key (..._shift_map) preceding an equivalent table without Shift:

• option_caps_shift_map is paired with option_caps_map,
• option_shift_map with option_map,
• caps_shift_map with caps_map, and
• shift_map with normal_map.

These pairings are important for a special rule that applies to keys on the numerical
keypad when Num Lock is on:

• If the Shift key is down, the non-Shift table is used.
• However, if the Shift key is not down, the Shift table is used.

In other words, Num Lock inverts the Shift and non-Shift tables for keys on the
numerical keypad.

Member Functions

282 – The Interface Kit DR3

Not every key needs to be mapped to a character. If the value recorded in a table is 0,
the key corresponding to that index is not mapped to a character given the particular
modifier states the table represents. Generally, modifier keys are not mapped to
characters, but all other keys are.

Dead keys. Next are the tables that map combinations of keys to single characters. The
first key in the combination is “dead”—it doesn’t produce a key-down event until the
user strikes another character key. When the user hits the second key, one of two things
will happen: If the second key is one that can be used in combination with the dead key,
a single key-down event reports the combination character. If the second key doesn’t
combine with the dead key, two key-down events occur, one reporting the dead-key
character and one reporting the second character.

There are five dead-key tables:

ulong acute_dead_key[32] The table for combining an acute accent (´) with
other characters.

ulong grave_dead_key[32] The table for combining a grave accent (`) with
other characters.

ulong circumflex_dead_key[32]
The table for combining a circumflex (ˆ) with other
characters.

ulong dieresis_dead_key[32]
The table for combining a dieresis (¨) with other
characters.

ulong tilde_dead_key[32] The table for combining a tilde (˜) with other
characters

The tables are named after diacritical marks that can be placed on more than one
character. However, the name is just a mnemonic; it means nothing. The contents of the
table determine what the dead key is and how it combines with other characters. It
would be possible, for example, to remap the tilde_dead_key table so that it had
nothing to do with a tilde.

Each table consists of a series of up to 16 character pairs, where each character is
declared as a ulong. The first character in the pair is the one that must be typed
immediately after the dead key. The second character is the resulting character, the
character that’s produced by the combination of the dead key plus the first character in
the pair. For example, if the first character is ‘o’, the second might be ‘ô’—meaning that
the combination of a dead key plus the character ‘o’ produces a circumflexed ‘ô’.

Member Functions

DR3 The Interface Kit – 283

The character pairs in the default grave_dead_key array look something like this:

' ', '‘',
'A', 'À',
'E', 'È',
'I', 'Ì',
'O', 'Ò',
'U', 'Ù',
'a', 'à',
'e', 'è',
'i', 'ì',
'o', 'ò',
'u', 'ù',
. . .

By convention, the first pair in each array is a space followed by the dead-key character
itself. This pair does double duty: It states that the dead key plus a space yields the
dead-key character, and it also names the dead key. The system understands what the
dead key is from the second character in the array. Any key that produces that character
while an Option key is held down will be dead and will combine to produce the
characters listed in the array.

The Option key is an essential ingredient; a key is dead only when an Option key is held
down and only if it’s mapped (in the four option_..._map tables) to the second character
listed in one of the dead-key arrays.

See also: GetKeys() and Modifiers() in the BView class, “Keyboard Information” in the
chapter introduction, set_modifier_key()

Member Functions

284 – The Interface Kit DR3

Constants

DR3 The Interface Kit – 285

Constants and Defined Types

This section lists the various constants and types that the Interface Kit defines to support
the work done by its principal classes. The Kit is a framework of cooperating classes;
almost all of its programming interface can be found in the class descriptions—
particularly the descriptions of member functions—presented in previous sections of
this chapter. Most of the constants and types listed here have already been explained
above in the class descriptions. Only one or two have not yet been mentioned in full
detail. All of them are noted here and briefly described. If a more lengthy discussion is
to be found under a class or a member function, you’ll be referred to that location.

Constants are listed first, followed by defined types. Constants that are defined as part
of an enumeration type are presented with the other constants, rather than with the type.
They’re listed in the “Constants” section under the type name.

Constants

alignment Constants

<interface/InterfaceDefs.h>

Enumerated constant

ALIGN_LEFT
ALIGN_RIGHT
ALIGN_CENTER

These constants define the alignment data type. They determine how lines of text are
aligned by BTextView and BStringView objects.

See also: SetAlignment() in the BTextView class

Constants

286 – The Interface Kit DR3

Character Constants

<interface/InterfaceDefs.h>

Enumerated constant Character value

BACKSPACE 0x08
ENTER 0x0a
RETURN 0x0a (same as ENTER or ‘\n’)
SPACE 0x20 (same as ‘ ’)
TAB 0x09 (same as ‘\t’)
ESCAPE 0x1b

LEFT_ARROW 0x1c
RIGHT_ARROW 0x1d
UP_ARROW 0x1e
DOWN_ARROW 0x1f

INSERT 0x05
DELETE 0x7f
HOME 0x01
END 0x04
PAGE_UP 0x0b
PAGE_DOWN 0x0c

FUNCTION_KEY 0x10

These constants stand for the ASCII characters they name. Constants are defined only
for characters that normally don’t have visible symbols.

See also: “Function Key Constants” below

color_space Constants

<interface/InterfaceDefs.h>

Enumerated constant Meaning

MONOCHROME_1_BIT One bit per pixel, where 1 is black and 0 is white.
GRAYSCALE_8_BIT 256 gray values, where 255 is black and 0 is white.
COLOR_8_BIT Colors specified as 8-bit indices into the color map.
RGB_24_BIT Colors as 8-bit red, green, and blue components.

These constants define the color_space data type. A color space describes two
properties of bitmap images:

• How many bits of information there are per pixel (the depth of the image), and

• How those bits are to be interpreted (whether as colors or on a grayscale, what the
color components are, and so on).

Constants

DR3 The Interface Kit – 287

See the “Colors” section in the chapter introduction for a fuller explanation of the four
different color spaces currently defined for this type.

See also: “Colors” on page 24, the BBitmap class

Control States

<interface/Control.h>

Enumerated constant Value

CONTROL_ON 1
CONTROL_OFF 0

These constants define the possible states of a typical control device.

See also: SetValue() in the BControl class

Cursor Transit Constants

<interface/View.h>

Enumerated constant Meaning

ENTERED_VIEW The cursor has just entered a view.
INSIDE_VIEW The cursor has moved within the view.
EXITED_VIEW The cursor has left the view

These constants describe the cursor’s transit through a view. Each MouseMoved()
notification includes one of these constants as an argument, to inform the BView
whether the cursor has entered the view, moved while inside the view, or exited the view.

See also: MouseMoved() in the BView class

drawing_mode Constants

<interface/InterfaceDefs.h>

Enumerated constant Enumerated constant

OP_COPY OP_ADD
OP_OVER OP_SUBTRACT
OP_ERASE OP_MIN
OP_INVERT OP_MAX
OP_BLEND

These constants define the drawing_mode data type. The drawing mode is a BView
graphics parameter that determines how the image being drawn interacts with the image

Constants

288 – The Interface Kit DR3

already in place in the area where it’s drawn. The various modes are explained under
“Drawing Modes” in the chapter introduction.

See also: “Drawing Modes” on page 27, SetDrawingMode() in the BView class

Font Name Length

<interface/InterfaceDefs.h>

Defined constant Value

FONT_NAME_LENGTH 32

This constant defines the maximum length of a font name. It’s used in the definition of
the font_name type.

See also: font_name under “Defined Types” below

Function Key Constants

<interface/InterfaceDefs.h>

Enumerated constant Enumerated constant

F1_KEY F9_KEY
F2_KEY F10_KEY
F3_KEY F11_KEY
F4_KEY F12_KEY
F5_KEY PRINT_KEY (the “Print Screen” key)
F6_KEY SCROLL_KEY (the “Scroll Lock” key)
F7_KEY PAUSE_KEY
F8_KEY

These constants stand for the various keys that are mapped to the FUNCTION_KEY
character. When the FUNCTION_KEY character is reported in a key-down event, the
application can determine which key produced the character by testing the key code
against these constants. (Control-p also produces the FUNCTION_KEY character.)

See also: “Character Mapping” on page 59 of the introduction to this chapter

Menu Bar Borders

<interface/MenuBar.h>

Enumerated constant Meaning

BORDER_FRAME Put a border around the entire frame rectangle.
BORDER_CONTENTS Put a border around the group of items only.
BORDER_EACH_ITEM Put a border around each item.

Constants

DR3 The Interface Kit – 289

These constants can be passed as an argument to BMenuBar’s SetBorder() function.

See also: SetBorder() in the BMenuBar class

menu_layout Constants

<interface/Menu.h>

Enumerated constant Meaning

ITEMS_IN_ROW Menu items are arranged horizontally, in a row.
ITEMS_IN_COLUMN Menu items are arranged vertically, in a column.
ITEMS_IN_MATRIX Menu items are arranged in a custom fashion.

These constants define the menu_layout data type. They distinguish the ways that items
can be arranged in a menu or menu bar—they can be laid out from end to end in a row
like a typical menu bar, stacked from top to bottom in a column like a typical menu, or
arranged in some custom fashion like a matrix.

See also: the BMenu and BMenuBar constructors

Message Constants for Interface Events

<app/AppDefs.h>

Enumerated constant Enumerated constant

WINDOW_RESIZED KEY_DOWN
WINDOW_MOVED KEY_UP
WINDOW_ACTIVATED MOUSE_DOWN
QUIT_REQUESTED MOUSE_UP

SCREEN_CHANGED MOUSE_MOVED
VIEW_RESIZED MESSAGE_DROPPED
VIEW_MOVED SAVE_REQUESTED
VALUE_CHANGED PANEL_CLOSED
PULSE

These constants identify the messages that report interface events. Each constant names
a different type of event.

See also: “Interface Events” on page 40 of the introduction to this chapter

Constants

290 – The Interface Kit DR3

Modifier States

<interface/View.h>

Defined constant Defined constant

SHIFT_KEY OPTION_KEY

LEFT_SHIFT_KEY LEFT_OPTION_KEY

RIGHT_SHIFT_KEY RIGHT_OPTION_KEY

CONTROL_KEY COMMAND_KEY

LEFT_CONTROL_KEY LEFT_COMMAND_KEY

RIGHT_CONTROL_KEY RIGHT_COMMAND_KEY

CAPS_LOCK MENU_KEY

SCROLL_LOCK
NUM_LOCK

These constants designate the Shift, Option, Control, Command, and Menu modifier
keys and the lock states set by the Caps Lock, Scroll Lock, and Num Lock keys.
They’re typically used to form a mask that describes the current, or required, modifier
states.

For each variety of modifier key, there are constants that distinguish between the keys
that appear at the left and right of the keyboard, as well as one that lumps both together.
For example, if the user is holding the left Control key down, both CONTROL_KEY and
LEFT_CONTROL_KEY will be set in the mask.

See also: Modifiers() in the BView and BWindow classes, AddShortcut() in the
BWindow class, the BMenu constructor

orientation Constants

<interface/InterfaceDefs.h>

Enumerated constant

HORIZONTAL
VERTICAL

These constants define the orientation data type that distinguishes between the vertical
and horizontal orientation of graphic objects. It’s currently used only to differentiate
scroll bars.

See also: the BScrollBar and BScrollView classes

Constants

DR3 The Interface Kit – 291

Pattern Constants

<interface/InterfaceDefs.h>

const pattern solid_front = { 0xff, 0xff, 0xff, 0xff, 0xff,0xff, 0xff, 0xff }

const pattern solid_back = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }

const pattern mixed_colors = { 0xaa, 0x55, 0xaa, 0x55, 0xaa, 0x55, 0xaa, 0x55 }

These constants name the three standard patterns defined in the Interface Kit:

• solid_front is a pattern that consists of the front color only. It’s the default pattern
for all BView drawing functions that stroke lines and fill shapes.

• solid_back is a pattern with only the background color. It’s used mainly to erase
images (to replace them with the background color).

• mixed_colors alternates pixels between the front and background colors in a
checkerboard pattern. The result is a halftone midway between the two colors.
This pattern can produce fine gradations of color, especially when the front and
background colors are set to two colors that are already quite similar.

See also: “Patterns” on page 25 of the chapter introduction, the pattern defined type
below

Resizing Modes

<interface/View.h>

const long FOLLOW_LEFT_TOP
const long FOLLOW_TOP_RIGHT

const long FOLLOW_RIGHT_BOTTOM

const long FOLLOW_LEFT_BOTTOM
const long FOLLOW_LEFT_TOP_RIGHT

const long FOLLOW_LEFT_TOP_BOTTOM

const long FOLLOW_TOP_RIGHT_BOTTOM

const long FOLLOW_LEFT_RIGHT_BOTTOM

const long FOLLOW_ALL

const long FOLLOW_NONE

These constants are used to set the behavior of a view when its parent is resized.
They’re explained under the BView constructor.

See also: the BView constructor, SetResizingMode() in the BView class

Constants

292 – The Interface Kit DR3

track_style Constants

<interface/View.h>

Enumerated constant Meaning

TRACK_WHOLE_RECT Drag the whole rectangle around.
TRACK_RECT_CORNER Drag only the left bottom corner of the rectangle.

These constants define the track_style data type. It determines how BView’s
BeginRectTracking() function permits the user to drag (or drag out) a rectangle.

See also: BeginRectTracking() in the BView class

Transparency Constants

<interface/InterfaceDefs.h>

const uchar TRANSPARENT_8_BIT
const rgb_color TRANSPARENT_24_BIT

These constants set transparent pixel values in a bitmap image. TRANSPARENT_8_BIT
designates a transparent pixel in the COLOR_8_BIT color space, and TRANSPARENT_24_BIT
designates a transparent pixel in the RGB_24_BIT color space.

Transparency is explained the “Drawing Modes” section of the chapter introduction.
Drawing modes other than OP_COPY preserve the destination image where a source
bitmap is transparent.

See also: “Drawing Modes” on page 27, the BBitmap class

View Flags

<interface/View.h>

Enumerated constant Meaning

FULL_UPDATE_ON_RESIZE Include the entire view in the clipping region.
WILL_DRAW Allow the BView to draw.
PULSE_NEEDED Report pulse events to the BView.
FRAME_EVENTS Report view-resized and view-moved events.

These constants can be combined to form a mask that sets the behavior of a BView
object. They’re explained in more detail under the class constructor. The mask is
passed to the constructor, or to the SetFlags() function.

See also: the BView constructor, SetFlags() in the BView class

Constants

DR3 The Interface Kit – 293

Window Areas

<app/Window.h>

Enumerated constant

UNKNOWN_AREA
TITLE_BAR
CONTENT_AREA
RESIZE_AREA
CLOSE_BOX

These constants designate the various parts of a window. They’re used in mouse-moved
event messages to report the area where the cursor is located.

See also: FilterMouseMoved() in the BWindow class

Window Flags

<interface/Window.h>

const long NOT_MOVABLE
const long NOT_H_RESIZABLE
const long NOT_V_RESIZABLE
const long NOT_RESIZABLE
const long ACCEPTS_FIRST_CLICK
const long NOT_CLOSABLE
const long NOT_ZOOMABLE
const long FLOATS

These constants set the behavior of a window. They can be combined to form a mask
that’s passed to the BWindow constructor.

See also: the BWindow constructor

window_type Constants

<interface/Window.h>

Enumerated constant Meaning

SHADOWED_WINDOW The window has a title bar and a shadowed border.
TITLED_WINDOW The window has a title bar.
BORDERED_WINDOW The window has a border but no title bar.
MODAL_WINDOW The window is a modal window.
BACKDROP_WINDOW The window is the backdrop for the whole screen.

QUERY_WINDOW The window displays the results of a query.

These constants define the window_type data type. They describe the various kinds of
windows that can be requested from the Application Server. Two of them,

Defined Types

294 – The Interface Kit DR3

BACKDROP_WINDOW and QUERY_WINDOW, are used only by the Browser application.
The others can be used by any application when constructing a window.

See also: the BWindow constructor

Defined Types

alignment

<interface/InterfaceDefs.h>

typedef enum {. . .} alignment

Alignment constants determine where lines of text are placed in a view.

See also: “alignment Constants” above and SetAlignment() in the BTextView class

color_map

<interface/InterfaceDefs.h>

typedef struct {
long id;
rgb_color color_list[256];
uchar inversion_map[256];
uchar index_map[32768];

} color_map

This structure contains information about the color context provided by the Application
Server. There’s one and only one color map for all applications connected to the Server.
Applications can obtain a pointer to the color map by calling the global system_colors()
function. See that function for information on the various fields.

See also: system_colors() global function

color_space

<interface/InterfaceDefs.h>

typedef enum {. . .} color_space

Color space constants determine the depth and interpretation of bitmap images. They’re
described under “Colors” in the introduction.

See also: “color_space Constants” above, “Colors” on page 24, the BBitmap class

Defined Types

DR3 The Interface Kit – 295

drawing_mode

<interface/InterfaceDefs.h>

typedef enum {. . .} drawing_mode

The drawing mode determines how source and destination images interact. The various
modes are explained in the chapter introduction under “Drawing Modes”.

See also: “Drawing Modes” on page 27, “drawing_mode Constants” above

edge_info

<interface/View.h>

typedef struct {
short left;
short right;

} edge_info

This structure records information about the location of a character outline within the
horizontal space allotted to the character. Edges separate one character from adjacent
characters on the left and right. They’re explained under the GetCharEdges() function
in the BView class.

See also: GetCharEscapements() and GetFontInfo() in the BView class

font_info

<interface/View.h>

typedef struct {
font_name name;
short size;
short shear;
short rotation;
short ascent;
short descent;
short leading;

} font_info

This structure holds information about a BView’s current font. Its fields are explained
under the GetFontInfo() function in the BView class.

See also: GetFontInfo() and SetFontName() in the BView class

Defined Types

296 – The Interface Kit DR3

font_name

<interface/InterfaceDefs.h>

typedef char font_name[FONT_NAME_LENGTH + 1]

This type defines a string long enough to hold the name of a font—32 characters plus
the null terminator.

See also: SetFontName() in the BView class, get_font_name() global function

key_info

<interface/View.h>

typedef struct {
ulong char_code;
ulong key_code;
ulong modifiers;
uchar key_states[16];

} key_info

This structure is used by BView’s GetKeys() function to return all known information
about what the user is currently doing on the keyboard.

See also: GetKeys() in the BView class, “Keyboard Information” on page 53 of the
introduction to this chapter

Defined Types

DR3 The Interface Kit – 297

key_map

<interface/InterfaceDefs.h>

typedef struct {
ulong version;
ulong caps_key;
ulong scroll_key;
ulong num_key;
ulong left_shift_key;
ulong right_shift_key;
ulong left_command_key;
ulong right_command_key;
ulong left_control_key;
ulong right_control_key;
ulong left_option_key;
ulong right_option_key;
ulong menu_key;
ulong lock_settings;
ulong control_map[128];
ulong option_caps_shift_map[128];
ulong option_caps_map[128];
ulong option_shift_map[128];
ulong option_map[128];
ulong caps_shift_map[128];
ulong caps_map[128];
ulong shift_map[128];
ulong normal_map[128];
ulong acute_dead_key[32];
ulong grave_dead_key[32];
ulong circumflex_dead_key[32];
ulong dieresis_dead_key[32];
ulong tilde_dead_key[32];

} key_map

This structure maps the physical keys on the keyboard to their functions in the user
interface. It holds the tables that assign characters to key codes, set up dead keys, and
determine which keys function as modifiers. There’s just one key map shared by all
applications running on the same machine. It’s returned by the system_key_map()
function.

See also: system_key_map() global function

Defined Types

298 – The Interface Kit DR3

menu_layout

<interface/Menu.h>

typedef enum {. . .} menu_layout

This type distinguishes the various ways that items can arranged in a menu or menu bar.

See also: the BMenu class, “menu_layout Constants” above

orientation

<interface/InterfaceDefs.h>

typedef enum {. . .} orientation

This type distinguishes between the VERTICAL and HORIZONTAL orientation of scroll
bars.

See also: the BScrollBar and BScrollView classes

pattern

<interface/InterfaceDefs.h>

typedef struct {
uchar data[8]

} pattern

A pattern is a arrangement of two colors—the front color and the background color—in
an 8-pixel by 8-pixel square. Pixels are specified in rows, with one byte per row and one
bit per pixel. Bits marked 1 designate the front color; those marked 0 designate the
background color. An example and an illustration are given under “Patterns” on page 25
of the introduction to this chapter.

See also: “Pattern Constants” above, “Patterns” in the chapter introduction

rgb_color

<interface/InterfaceDefs.h>

typedef struct {
uchar red;
uchar green;
uchar blue;
uchar alpha;

} rgb_color

This type specifies a full color in the RGB_24_BIT color space. Each component, except
alpha, can have a value ranging from a minimum of 0 to a maximum of 255.

Defined Types

DR3 The Interface Kit – 299

< The alpha component, which is designed to specify the coverage of the color (how
transparent or opaque it is), is currently ignored. However, an rgb_color can be made
completely transparent by assigning it the special value, TRANSPARENT_24_BIT. >

See also: SetFrontColor() and SetBackColor() in the BView class

screen_info

<interface/InterfaceDefs.h>

typedef struct {
color_space mode;
BRect frame;
void *bits;
long bytes_per_row;
long reserved;

} screen_info

This structure holds information about a screen. Its fields are explained under the
get_screen_info() global function.

See also: get_screen_info() global function

symbol_set_name

<interface/InterfaceDefs.h>

typedef font_name symbol_set_name

This type defines a string long enough to hold the name of a symbol set—32 characters
plus the null terminator. The names of symbol sets are subject to the same length
constraint as the names fonts, which is why this type can be a redefinition of font_name.

See also: get_symbol_set_name() global function

track_style

<interface/View.h>

typedef enum {. . .} track_style

This type describes the ways that BeginRectTracking() in the BView class can permit
the user to drag a rectangle.

See also: BeginRectTracking() in the BView class, “track_style Constants” above

Defined Types

300 – The Interface Kit DR3

window_type

<interface/Window.h>

typedef enum {. . .} window_type

This type describes the various kinds of windows that can be requested from the
Application Server.

See also: the BWindow constructor, “window_type Constants” above

